Abstract:
A device and method are described for transmitting tissue conductance communication (TCC) signals. A device may be is configured to establish a transmission window by transmitting a TCC test signal at multiple time points over a transmission test period to a receiving device and detect at least one response to the transmitted TCC test signals performed by the receiving device. The IMD is configured to establish the transmission window based on the at least one detected response so that the transmission window is correlated to a time of relative increased transimpedance between a transmitting electrode vector and receiving electrode vector during the transmission test period.
Abstract:
A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
Abstract:
An implantable medical device and associated method to determine an optimal control parameter setting for controlling a cardiac therapy that includes a therapy delivery module to deliver cardiac pacing signals at a plurality of pacing rates, and an admittance measurement module to determine admittance signals associated with each of the plurality of pacing rates. A control unit determines metrics of hemodynamic performance corresponding to each of the plurality of pacing rates in response to the determined admittance signals, identifies pacing rates of the plurality of pacing rates as rejected rates in response to the determined metrics of hemodynamic performance, and determines a pacing rate of the plurality of pacing rates as an optimal rate for delivering the cardiac therapy in response to the identified pacing rates.
Abstract:
Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
Abstract:
A medical device and associated method for delivery of a cardiac therapy that includes determining a first impedance signal along a thoracic electrode vector extending within a portion of a thoracic cavity, determining a second impedance signal along an extra-thoracic electrode vector extending outside the thoracic cavity, comparing first amplitude measurements corresponding to the first impedance signals and second amplitude measurements corresponding to the second impedance signals, comparing first slope measurements corresponding to the first impedance signals and second slope measurements corresponding to the second impedance signals, and determining delivery of the cardiac therapy in response to the comparing.
Abstract:
A system and method for monitoring respiratory function that includes an acoustic sensing device sensing an acoustic waveform ocurring during one of an inspiration phase associated with at least one breath of a patient and an expiration phase associated with at least one breath of a patient, and a processor configured to determine changes in high frequency acoustic amplitude associated with the sensed acoustic waveform and, in response to the determined changes in high frequency acoustic amplitude, determine an indication of respiratory function.
Abstract:
An implantable medical device and associated method to determine an optimal control parameter setting for controlling a cardiac therapy that includes a therapy delivery module to deliver cardiac pacing signals at a plurality of pacing rates, and an admittance measurement module to determine admittance signals associated with each of the plurality of pacing rates. A control unit determines metrics of hemodynamic performance corresponding to each of the plurality of pacing rates in response to the determined admittance signals, identifies pacing rates of the plurality of pacing rates as rejected rates in response to the determined metrics of hemodynamic performance, and determines a pacing rate of the plurality of pacing rates as an optimal rate for delivering the cardiac therapy in response to the identified pacing rates.