Abstract:
In one aspect, a degradable apparatus is disclosed, including: an inner core with a first degradation rate in a downhole environment; an outer sheath disposed around an outer extent of the inner core with a second degradation rate less than the first degradation rate in the downhole environment. In another aspect, a method of temporarily sealing a downhole zone is disclosed, including: providing an inner core with a first degradation rate in a downhole environment; providing an outer sheath disposed around an outer extent of the inner core with a second degradation rate less than the first degradation rate in the downhole environment; sealing the downhole zone with the outer sheath; exposing the outer sheath to the downhole environment; and exposing the inner core to the downhole environment.
Abstract:
A method of preparing a cured thermoplastic material includes curing a thermoplastic polymer having a thermal decomposition temperature greater than or equal to about 200° C., at a temperature of about 200° C. to about 400° C., for a total time of less than or equal to 200 hours. A method of making a shape memory material also includes curing a thermoplastic polymer to prepare a cured thermoplastic material.
Abstract:
A method of deploying a borehole filtration device is provided utilizing the steps of: deploying a filtration device comprising a polymer foam having a first cell structure, a portion of the molecular structure of which polymer foam is degradable by exposure to a post-treatment fluid, into a borehole; and exposing the polymer foam to the post-treatment fluid, thereby modifying the cell structure of the polymer foam to a second cell structure.
Abstract:
A shape memory polymer is initially fabricated to a size where its peripheral dimension will be at least as large as the borehole wall in which it is to be deployed. After the initial manufacturing the material temperature is elevated above the transition temperature and the material is stretched on a mandrel to retain its inside dimension as its outside dimension is reduced to size that will allow running the seal to a desired subterranean location without failing the material during the stretching. The material is allowed to cool below the transition temperature to hold the new shape. The material on the mandrel is then secured to a tubular string and delivered to the desired location. Wellbore fluid at given temperature raises the material again above the transition temperature, which causes the material to revert to its originally manufactured shape.
Abstract:
A polymer nanocomposite comprises a polymer; and a nanoparticle derivatized to include functional groups including carboxy, epoxy, ether, ketone, amine, hydroxy, alkoxy, alkyl, aryl, aralkyl, alkaryl, lactone, functionalized polymeric or oligomeric groups, or a combination comprising at least one of the forgoing functional groups. The variability in tensile strength and percent elongation for the polymer nanocomposite is less than the variability of these properties obtained where an underivatized nanoparticle is included in place of the derivatized nanoparticle.
Abstract:
A thermoplastic material comprises the cure product of a thermoplastic polymer having a thermal decomposition temperature greater than or equal to about 200° C., the thermoplastic polymer being cured at a temperature of about 200° C. to about 400° C., for a total time of less than or equal to 200 hours. An article is formed from the thermoplastic material.
Abstract:
A method of making a reconfigurable article is disclosed. The method includes providing a powder comprising a plurality of base material particles. The method also includes providing a powder comprising a plurality of removable material particles; and forming a base article from the base material comprising a plurality of removable material particles. A method of using a reconfigurable article is also disclosed. The method includes forming a base article, the base article comprising a base material and a removable material, wherein the base article comprises a downhole tool or component. The method also includes inserting the base article into a wellbore. The method further includes performing a first operation utilizing the base article; exposing the removable material of the base article to a wellbore condition that is configured to remove the removable material and form a modified article; and performing a second operation using the article.
Abstract:
A polymer nanocomposite comprises a polymer; and a nanoparticle derivatized to include functional groups including carboxy, epoxy, ether, ketone, amine, hydroxy, alkoxy, alkyl, aryl, aralkyl, alkaryl, lactone, functionalized polymeric or oligomeric groups, or a combination comprising at least one of the forgoing functional groups. The variability in tensile strength and percent elongation for the polymer nanocomposite is less than the variability of these properties obtained where an underivatized nanoparticle is included in place of the derivatized nanoparticle.
Abstract:
A driving device for a scanner includes an elongate guiding unit mounted in a base and disposed under an image sensor carriage that extends in a first direction, extending along a second direction transverse to the first direction, and having first and second side rail surfaces transverse to a top rail surface. A roller unit is mounted rotatably on a bottom side of the image sensor carriage, and includes a first roller rotatable about a first axis parallel to the first direction and disposed to roll along the top rail surface, and a second roller rotatable about a second axis transverse to the first and second directions and disposed to roll along the first side rail surface. A spring-loaded retaining unit is mounted on the image sensor carriage, and is disposed to contact rotatablely the second side rail surface. A driving unit drives the image sensor carriage to move in the second direction in the base.