Abstract:
Wireless communications systems and methods related to improving multiplexing capability in a frequency spectrum are provided. A first wireless communication device obtains a configuration for communicating a communication signal in a frequency spectrum. The configuration is based on at least a number of wireless communication devices scheduled to communicate in a time period. The configuration indicates resources in the frequency spectrum over the time period and a frequency distribution mode of the resources. The first wireless communication device communicates, with a second wireless communication device, the communication signal in the frequency spectrum during the time period based on the configuration.
Abstract:
Systems and methods are disclosed that facilitate creating antenna ports to correspond to two or more groups of user equipment. The systems and methods can organize two or more groups of user equipment and signal to each of the two or more groups a respective antenna port. The systems and methods can further communicate mapping information, a reference signal, or delay related to a linear combination in order to identify antenna ports. Based on such communicated information, the reference signal can be decoded in order to identify each antenna port.
Abstract:
Certain aspects of the present disclosure provide techniques for wireless communications, wherein first number of transit antennas is advertised, but a different number of transmit antennas are actually used for transmission.
Abstract:
Methods and apparatus for selecting samples for secondary synchronization signal (SSS) detection are described. Several alternatives are provided for efficient cell identifier detection. In a first alternative, multiple bursts of a signal received from a cell are sampled with non-uniform spacing between sampling intervals to determine a sequence for cell identification. In a second alternative, samples of a first and a second signal received from a stronger cell are cancelled, and a sequence for detecting a weaker cell is determined by reducing effects of the samples of a third signal received from the weaker cell which do not overlap with the primary synchronization signal (PSS) or SSS of the stronger cell. In a third alternative, a sequence for detecting a weaker cell is determined by reducing effects of any sampled bursts that correspond to a high transmission power portion of a signal from a stronger cell.
Abstract:
Techniques for supporting communication in a dominant interference scenario are described. A user equipment (UE) may communicate with a first base station and may observe high interference from and/or may cause high interference to a second base station. In one design, the first base station may use a first frequency band, which may overlap at least partially with a second frequency band for the second base station and may further extend beyond the second frequency band. The first base station may send at least one synchronization signal and a broadcast channel in a center portion of the first frequency band for use by UEs to detect the first base station. The second frequency band may be non-overlapping with the center portion of the first frequency band. The first base station may also communicate with at least one UE on the first frequency band.
Abstract:
An idle mode UE can RACH to a cell different from the cell paging the UE. The UE can be allocated additional time to respond to all cells in the neighborhood to identify the cell in which to RACH. Interference cancellation can occur at different rates based on whether the UE is in connected mode or idle mode. The time to respond to the page can be a function of a paging cycle. Additionally, a variable bias may promote early handoff to lower power cells and late handoff to high power cells.
Abstract:
Certain aspects of the present disclosure relate to techniques for transmitting a clear to send (CTS)-to-self indication. According to certain aspects, a method for wireless communications by a wireless device is provided. The method generally includes scheduling a first antenna at the wireless device for communication using one of a first radio access technology (RAT) or a second RAT, scheduling one or more other antennas at the wireless device configured for communication using the first RAT, for communication using the second RAT in order to enable one of transmit diversity on the second RAT or simultaneous communication on the first and second RATs, and transmitting an idle-mode indication to force the first RAT to an idle mode
Abstract:
Apparatuses and methods of advertising antenna ports to UEs is provided. In an aspect, a device may receive an advertisement regarding transmit antenna ports for legacy UE operation and transmit antenna ports for advanced UE operation. The advertisement may indicate a number of transmit antenna ports set for legacy UE operation and a different number of transmit antenna ports set for advanced UE operation. The device may also receive all control channels for legacy and advanced UE operation via the transmit antenna ports for legacy UE operation, and receive first reference signals via the transmit antenna ports for legacy UE operation and second reference signals via the transmit antenna ports for advanced UE operation. The first reference signals are received in all subframes, and the second reference signals are received in a subset of all the subframes based at least in part on a subframe configuration.
Abstract:
Certain aspects of the present disclosure provide techniques for wireless communications, wherein first number of transit antennas is advertised, but a different number of transmit antennas are actually used for transmission.
Abstract:
Techniques for supporting communication in a heterogeneous network are described. In an aspect, communication in a dominant interference scenario may be supported by reserving subframes for a weaker base station observing high interference from a strong interfering base station. In another aspect, interference due to a first reference signal from a first station (e.g., a base station) may be mitigated by canceling the interference at a second station (e.g., a UE) or by selecting different resources for sending a second reference signal by the second station (e.g., another base station) to avoid collision with the first reference signal. In yet another aspect, a relay may transmit in an MBSFN mode in subframes that it listens to a macro base station and in a regular mode in subframes that it transmits to UEs. In yet another aspect, a station may transmit more TDM control symbols than a dominant interferer.