Abstract:
A method and apparatus for connecting to a secondary enhanced NodeB. A transceiver configured to receive a Radio Resource Control (RRC) message from a Master enhanced NodeB (MeNB). The RRC message comprises a dedicated random access resources configuration for the UE to perform random access to a cell associated with a Secondary enhanced NodeB (SeNB) for a purpose of an addition of the SeNB, and an identification of the cell to which the random access is to be performed. Responsive to receiving the RRC message, command the Media Access Control (MAC) to trigger the random access for the addition of the SeNB to the cell with the identification indicated in the RRC message with the random access resources indicated in the RRC message. The MeNB is an eNB which the UE connects to initially and which acts as mobility anchor.
Abstract:
A method includes detecting a device to device (D2D) synchronization signal of a neighbor base station, transmitted from at least one other UE associated with the neighbor base station through a transceiver, determining at least one UE receive (RX) resource pool configured by the neighbor base station based on the D2D synchronization signal of the neighbor base station, and monitoring a D2D discovery or communication signal transmitted from the at least one other UE according to the at least one UE RX resource pool through the transceiver. A method includes determining at least one UE RX resource pool for at least one device associated with a base station, each UE RX resource pool comprising a repetition of a Scheduling Assignment (SA) pool and a data pool with a scheduling cycle, the SA pool comprising a SA bitmap, and the data pool comprising at least one repeated data bitmap.
Abstract:
Methods and apparatuses manage beam selection. A method for a mobile station (MS) includes identifying beamforming constraints of the MS. The method also includes performing measurement on a channel between a base station (BS) and the MS on at least one transmit (TX) beam and at least one receive (RX) beam. Additionally, the method includes sending beamforming feedback information based on the identified constraints of the MS and the channel measurement. A method for a base station (BS) includes receiving beamforming feedback information comprising at least one of radio frequency beamforming constraints of a mobile station or channel measurement information on a channel between the BS and the MS. Additionally, the method includes sending, to the MS, control information comprising an indication of at least one of MS RX beams or BS TX beams to be used in downlink communication with the MS based on the received beamforming feedback information.
Abstract:
A base station and mobile station are configured to perform control beam association. A method at the base station includes transmitting at least one first control beam including reference signals on which the mobile station can perform a measurement. The method also includes receiving a first measurement report from the mobile station of the at least one first control beam. The method further includes, based on the first measurement report, selecting at least one of the at least one first control beam for at least one control channel for the mobile station to associate with. The method still further includes transmitting control information in the at least one control channel to the mobile station using the at least one selected control beam, the control information comprising at least one resource allocation indication for the mobile station. The at least one selected control beam is associated to the mobile station.
Abstract:
A base station is capable of communicating with a plurality of subscriber stations using a beamforming scheme that varies beams over different time instances. The base station includes a plurality of antenna arrays configured to transmit N spatial beams and carry a reference symbols corresponding to specific spatial beams. The base station also includes NRF number of radio frequency (RF) processing chains coupled to respective ones of the plurality of antenna arrays, wherein N>>NRF. The subscriber station includes MRF processing receive paths configured to receive M number of beams from the base station.
Abstract:
Methods and apparatus are provided for a base station to transmit and for a User Equipment (UE) to receive repetitions of an enhanced physical downlink control channel (EPDCCH). Time and frequency resources for EPDCCH repetitions are defined together with restrictions in time resources to provide UE power savings. Time and frequency resources are also defined for repetitions of a physical downlink shared channel (PDSCH) transmission and for repetitions of a physical uplink shared channel (PUSCH) transmission. Methods and apparatus are also provided for the UE to transmit and for the base station to receive acknowledgement information in repetitions of a physical uplink shared channel (PUCCH).
Abstract:
Methods and apparatus are provided for a base station to transmit repetitions of broadcast information and for a UE to detect the broadcast information. In a first method, the base station maps each repetition in a respective quadruple of subframe symbols while accounting for a possible different number of available sub-carriers among quadruplets of subframe symbols. In a second method, the base station maps the repetitions successively in available sub-carriers. For intermittent transmissions of repetitions, the UE can use the mapping structure of the repeated broadcast information to determine an existence of a transmission.
Abstract:
Methods and apparatus are provided for a User Equipment (UE) and a base station in communication with each other to determine parameters for a Random Access (RA) process. The base station informs the UE through a System Information Block (SIB) of a number of resource sets for RA preamble transmission by the UE. Each resource set is associated with a number of repetitions for a RA preamble transmission, with a maximum number of RA preamble transmissions, and with a number of repetitions the base station transmits a response to a RA preamble reception. The SIB also informs an association between a range of path-loss values and a number of RA preamble repetitions. The UE determines a number of repetitions for a first RA preamble transmission from its path-loss measurement.
Abstract:
A base station enables a mobile station to employ a random access retransmission scheme in a wireless communication network. The mobile station includes a plurality of antennas configured to communicate with the base station. The mobile station also includes a processing circuitry coupled to the plurality of antennas. The processing circuitry is configured to perform a random access during a random access channel (RACH) burst. The processing circuitry also is configured to at least one of: transmit a random access signal with at least one of an initial transmit power level and an initial transmit beamwidth, and, in response to a random access attempt failure, change at least one of a transmit (Tx) power level and a Tx beamwidth and retransmit the random access signal.
Abstract:
A user equipment (UE) is configured by a Master enhanced NodeB (MeNB) for operation with dual connectivity to a Secondary eNB (SeNB) to transmit acknowledgement information when the UE is power limited and for a respective eNB to determine a UE power limitation. The UE, the MeNB, and the SeNB adjust operation according to a partitioning of a UE capability between the MeNB and the SeNB. The UE capability can be a transmission power, a soft buffer size, a reception or a transmission of a number of data transport block bits, or a number of decoding operations.