摘要:
In order to keep the luminance of a light emitting element constant, the correction is performed by an external device such as a computer, in which case a display device is inevitably complicated and increased in size. Even when degradation characteristics of the light emitting element are previously stored in a computer, the degradation characteristics vary at random depending on hysteresis of the light emitting element; therefore, changes in luminance cannot be corrected. According to the invention, a display device includes a displaying light emitting element provided in a display portion and a plurality of monitoring light emitting elements having the similar characteristics as the displaying light emitting element. At least one of the monitoring light emitting elements is operated under a condition different from the displaying light emitting element, and the ratio of the total amount of charge flowing through the displaying light emitting element to that flowing through the monitoring light emitting element is controlled to satisfy a certain relation in view of luminance degradation. When the one monitoring light emitting element reaches a predetermined voltage or time, the connection is switched from the one monitoring light emitting element to another monitoring light emitting element that has been operated under the same condition as the displaying light emitting element.
摘要:
In order to keep the luminance of a light emitting element constant, the correction is performed by an external device such as a computer, in which case a display device is inevitably complicated and increased in size. Even when degradation characteristics of the light emitting element are previously stored in a computer, the degradation characteristics vary at random depending on hysteresis of the light emitting element; therefore, changes in luminance cannot be corrected. According to the invention, a display device includes a displaying light emitting element provided in a display portion and a plurality of monitoring light emitting elements having the similar characteristics as the displaying light emitting element. At least one of the monitoring light emitting elements is operated under a condition different from the displaying light emitting element, and the ratio of the total amount of charge flowing through the displaying light emitting element to that flowing through the monitoring light emitting element is controlled to satisfy a certain relation in view of luminance degradation. When the one monitoring light emitting element reaches a predetermined voltage or time, the connection is switched from the one monitoring light emitting element to another monitoring light emitting element that has been operated under the same condition as the displaying light emitting element.
摘要:
A display device where the influence of variations in current of the light emitting element due to changes in ambient temperature and changes with time can be suppressed. The display device of the invention has a light emitting element, a driving transistor connected in series to the light emitting element, a monitoring light emitting element, a limiter transistor connected in series to the monitoring light emitting element, a constant current source for supplying a constant current to the monitoring light emitting element, and a circuit for outputting a potential equal to an inputted potential. A first electrode of the light emitting element is connected to an output terminal of the circuit through the driving transistor, and a first electrode of the monitoring light emitting element is connected to an input terminal of the circuit through the limiter transistor. The channel length L1 and the channel width W1 of the driving transistor, and the channel length L2 and the channel width W2 of the limiter transistor satisfy L1/W1:L2/W2=1:2 to 1:10.
摘要:
A display device where the influence of variations in current of the light emitting element due to changes in ambient temperature and changes with time can be suppressed. The display device of the invention has a light emitting element, a driving transistor connected in series to the light emitting element, a monitoring light emitting element, a limiter transistor connected in series to the monitoring light emitting element, a constant current source for supplying a constant current to the monitoring light emitting element, and a circuit for outputting a potential equal to an inputted potential. A first electrode of the light emitting element is connected to an output terminal of the circuit through the driving transistor, and a first electrode of the monitoring light emitting element is connected to an input terminal of the circuit through the limiter transistor. The channel length L1 and the channel width W1 of the driving transistor, and the channel length L2 and the channel width W2 of the limiter transistor satisfy L1/W1:L2/W2=1:2 to 1:10.
摘要翻译:可以抑制由于环境温度的变化而随着时间的变化而影响发光元件的电流的变化的显示装置。 本发明的显示装置具有发光元件,与发光元件串联连接的驱动晶体管,监视发光元件,与监视发光元件串联连接的限幅晶体管,用于供给 到监视发光元件的恒定电流,以及用于输出等于输入电位的电位的电路。 发光元件的第一电极通过驱动晶体管连接到电路的输出端,并且监控发光元件的第一电极通过限幅晶体管连接到电路的输入端。 驱动晶体管的沟道长度L 1和沟道宽度W 1以及限制晶体管的沟道长度L 2和沟道宽度W 2满足L 1 / W 1:L 2 / W 2 = 1:2〜1 :10。
摘要:
A display device capable of displaying on both screens and switching between vertical and horizontal display, and a driving method thereof. Each pixel comprises a first region including a first light emitting element, and a second region including a second light emitting element. The first region has a bottom emission structure whereas the second region has a top emission structure. The display device comprises a source signal line driver circuit for driving the pixel, a first gate signal line driver circuit having a scan direction perpendicular to that of the source signal line driver circuit, and a second gate signal line driver circuit having a scan direction perpendicular to that of the first gate signal line driver circuit. In a normal display, the first gate signal line driver circuit performs perpendicular scanning, and when switching between vertical and horizontal display, the second gate signal line driver circuit performs perpendicular scanning.
摘要:
A display device capable of displaying on both screens and switching between vertical and horizontal display, and a driving method thereof. Each pixel comprises a first region including a first light emitting element, and a second region including a second light emitting element. The first region has a bottom emission structure whereas the second region has a top emission structure. The display device comprises a source signal line driver circuit for driving the pixel, a first gate signal line driver circuit having a scan direction perpendicular to that of the source signal line driver circuit, and a second gate signal line driver circuit having a scan direction perpendicular to that of the first gate signal line driver circuit. In a normal display, the first gate signal line driver circuit performs perpendicular scanning, and when switching between vertical and horizontal display, the second gate signal line driver circuit performs perpendicular scanning.
摘要:
A display device capable of displaying on both screens and switching between vertical and horizontal display, and a driving method thereof. Each pixel comprises a first region including a first light emitting element, and a second region including a second light emitting element. The first region has a bottom emission structure whereas the second region has a top emission structure. The display device comprises a source signal line driver circuit for driving the pixel, a first gate signal line driver circuit having a scan direction perpendicular to that of the source signal line driver circuit, and a second gate signal line driver circuit having a scan direction perpendicular to that of the first gate signal line driver circuit. In a normal display, the first gate signal line driver circuit performs perpendicular scanning, and when switching between vertical and horizontal display, the second gate signal line driver circuit performs perpendicular scanning.
摘要:
In the present invention, a semiconductor device that has a nonvolatile memory element to which data can be written at times other than during manufacture and in which forgery and the like performed by rewriting of data can be prevented is provided. In addition, a semiconductor device in which a high level of integration is possible is provided. Furthermore, a semiconductor device in which miniaturization is possible is provided. In a semiconductor device having a memory element that includes a first conductive layer, a second conductive layer, and an organic compound layer interposed between the first conductive layer and the second conductive layer; the second conductive layer is connected to a wiring, formed in the same way as the first conductive layer is formed, through an opening formed in the organic compound layer.
摘要:
It is an object of the present invention to provide a light emitting element with a low driving voltage. In a light emitting element, a first electrode; and a first composite layer, a second composite layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a second electrode, which are stacked over the first electrode, are included. The first composite layer and the second composite layer each include metal oxide and an organic compound. A concentration of metal oxide in the first composite layer is higher than a concentration of metal oxide in the second composite layer, whereby a light emitting element with a low driving voltage can be obtained. Further, the composite layer is not limited to a two-layer structure. A multi-layer structure can be employed. However, a concentration of metal oxide in the composite layer is gradually higher from the light emitting layer to first electrode side.
摘要:
A semiconductor device that can transmit and receive data without contact is popular partly as some railway passes, electronic money cards, and the like; however, it has been a prime task to provide an inexpensive semiconductor device for further popularization. In view of the above current conditions, a semiconductor device of the present invention includes a memory with a simple structure for providing an inexpensive semiconductor device and a manufacturing method thereof. A memory element included in the memory includes a layer containing an organic compound, and a source electrode or a drain electrode of a TFT provided in the memory element portion is used as a conductive layer which forms a bit line of the memory element.