摘要:
A thin film transistor substrate of horizontal electric field type includes: a gate line and a first common line formed on a substrate to be in parallel to each other; a data line crossing the gate line and the first common line with a gate insulating film therebetween to define a pixel area; a second common line crossing the first common line having the gate insulating film therebetween; a thin film transistor connected to the gate line and the data line; a common electrode extending from the second common line in said pixel area; a pixel electrode that is parallel to the common electrode and the second common line; a protective film for covering the thin film transistor; a gate pad having a lower gate pad electrode connected to an upper gate pad electrode through a first contact hole; a common pad having a lower common pad electrode connected to an upper common pad electrode through a second contact hole; and a data pad having a lower data pad electrode connected to an upper data pad electrode provided within a third contact hole.
摘要:
A thin film transistor array substrate for a liquid crystal display panel includes a gate line formed on a substrate. A data line crosses the gate line, thus defining a pixel region. A gate insulating film is positioned between the data line and the gate line. A thin film transistor is formed at a crossing of the gate line and the data line. A passivation film pattern exposes a portion of a drain electrode of the thin film transistor. At least one protrusion is provided to divide the pixel region into a plurality of regions, each of the regions having a different liquid crystal alignment from the other regions. A pixel electrode is connected to the thin film transistor to cover the pixel region excluding the passivation film pattern and the at least one protrusion.
摘要:
A fringe field switching type thin film transistor substrate includes a double layered structure gate line; a data line crossing the gate line, wherein a gate insulating film is formed therebetween; a thin film transistor having a gate electrode connected to the gate line, a source electrode connected to the data line, and a drain electrode opposing the source electrode; a double layered structure common line parallel to the gate line; a common electrode plate integrated with the transparent conductive layer of the common line and formed in a pixel area defined by the crossing of the gate line and the data line; a pixel electrode slit covering the drain electrode of the thin film transistor and overlapping the common electrode plate, wherein the gate insulating film is formed therebetween in the pixel area; and a data protection pattern covering the data line and the source electrode.
摘要:
A thin film transistor (TFT) substrate is fabricated in three mask processes. In a first mask process, a gate line and a gate electrode are formed. In a second mask process, a data line, a source electrode, a drain electrode, a semiconductor layer, and a first upper storage electrode overlapping the gate line are formed from a gate insulating film, undoped and doped amorphous silicon layers, and a data metal layer. In a third mask process, a pixel hole is formed through protective and gate insulating films within and outside a pixel area, the first upper storage electrode is partially removed, a pixel electrode contacts a side of the drain electrode within the pixel hole at the pixel area, and a second upper storage electrode contacts a side of the first upper storage electrode in the pixel hole outside the pixel area.
摘要:
A method of manufacturing a thin film transistor capable of simplifying a substrate structure and a manufacturing process is disclosed. The method of manufacturing a thin film transistor array substrate includes involves a three-round mask process, which includes: forming a gate pattern on a substrate; forming a gate insulating film on the substrate having the gate pattern thereon; forming a source/drain pattern and a semiconductor pattern; forming a passivation film to protect the thin film transistor on an entire surface of the substrate; forming a photo-resist pattern on the passivation film; patterning the passivation film using the photo-resist pattern to form a passivation film pattern; and forming a transparent electrode pattern being extended from a lateral surface of the passivation film pattern and formed at an area except for the passivation film pattern.
摘要:
An array substrate of a liquid crystal display (LCD) device and a method for fabricating the same is disclosed, to decrease the unit cost and time of fabrication by decreasing the usage count of mask, which includes simultaneously forming a gate line, a gate electrode and a pixel electrode on a substrate; depositing a gate insulating layer and an active layer on an entire surface of the substrate including the gate line; patterning the gate insulating layer and the active layer to remain on the gate line and the gate electrode; selectively removing the active layer above the gate line; forming a data line perpendicular to the gate line and source/drain electrodes; and depositing a passivation layer on the entire surface of the substrate including the data line.
摘要:
The present invention relates to an apparatus and a method of fabricating a thin film transistor array substrate. The apparatus includes a dip strip part for stripping a photo-resist pattern and a thin film formed on a substrate by using a stripper; a removing part for removing residual photo-resist and thin film from the substrate; and a jet strip part for jetting the stripper to remove residual particles of photo-resist and thin film left on the substrate. The method of fabricating includes dipping a substrate in a stripper, wherein the substrate has a photo-resist pattern and a thin film, the thin film being formed on an entire surface of the substrate so as to cover the photo-resist pattern; removing residual photo-resist and thin film using the stripper; and removing particles of residual photo-resist and thin film left on the substrate.
摘要:
A patterning method includes depositing a pattern target layer on a surface of a substrate, providing a printing plate with concaves in a first side of a transparent substrate and an opaque layer on the first side except in the concaves of the first sides, filling resins into the concaves of the printing plate, positioning the substrate of the printing plate to correspond to an upper portion of the pattern target layer, and transferring resins of the printing plate onto the pattern target layer by exposing resins to a curing light to harden resins.
摘要:
A thin film transistor substrate of horizontal electric field type includes: a gate line and a first common line formed on a substrate to be in parallel to each other; a data line crossing the gate line and the first common line with a gate insulating film therebetween to define a pixel area; a second common line crossing the first common line having the gate insulating film therebetween; a thin film transistor connected to the gate line and the data line; a common electrode extending from the second common line in said pixel area; a pixel electrode that is parallel to the common electrode and the second common line; a protective film for covering the thin film transistor; a gate pad having a lower gate pad electrode connected to an upper gate pad electrode through a first contact hole; a common pad having a lower common pad electrode connected to an upper common pad electrode through a second contact hole; and a data pad having a lower data pad electrode connected to an upper data pad electrode provided within a third contact hole.
摘要:
A thin film transistor array substrate, and its manufacturing method, that is made using a three-round mask process. Gate patterns, each of which includes a gate line consisting of a transparent metal pattern and a gate metal pattern, a gate electrode, a lower gate pad, a lower data pad, and a pixel electrode are formed using a first mask process. A second mask process forms a gate insulating pattern and a semiconductor pattern. A third mask process forms source and drain patterns, each of which includes a data line, a source electrode, a drain electrode, an upper gate pad and an upper data pad. Additionally, the gate metal pattern on an upper portion of the pixel electrode is removed.