摘要:
One illustrative method disclosed herein includes forming a sacrificial mandrel above a structure, forming a plurality of first sidewall spacers on opposite sides of the sacrificial mandrel, removing the sacrificial mandrel, forming a plurality of second sidewall spacers on opposite sides of each of the first sidewall spacers, and removing the first sidewall spacers to thereby define a patterned spacer mask layer comprised of the plurality of second sidewall spacers.
摘要:
Improved MOSFET devices are obtained by incorporating strain inducing source-drain regions whose closest facing “nose” portions underlying the gate are located at different depths from the device surface. In a preferred embodiment, the spaced-apart source-drain regions may laterally overlap. This close proximity increases the favorable impact of the strain inducing source-drain regions on the carrier mobility in an induced channel region between the source and drain. The source-drain regions are formed by epitaxially refilling asymmetric cavities etched from both sides of the gate. Cavity asymmetry is obtained by forming an initial cavity proximate only one sidewall of the gate and then etching the final spaced-apart source-drain cavities proximate both sidewalls of the gate along predetermined crystallographic directions. The finished cavities having different depths and nose regions at different heights extending toward each other under the gate, are epitaxially refilled with the strain inducing semiconductor material for the source-drain regions.
摘要:
In one example, a method disclosed herein includes forming a gate electrode structure for a PMOS transistor and a gate electrode structure for a NMOS transistor, forming a plurality of cavities in the substrate proximate the gate electrode structure of the PMOS transistor and performing an epitaxial deposition process to form raised silicon-germanium regions is the cavities. The method concludes with the step of performing a common etching process on the PMOS transistor and the NMOS transistor to define recessed regions in the substrate proximate the gate electrode structure of the NMOS transistor and to reduce the amount of the silicon-germanium material positioned above the surface of the substrate for the PMOS transistor.
摘要:
Disclosed herein are various methods of forming metal silicide regions on semiconductor devices by using different temperatures during the silicidation processes. In one example, the method includes forming a plurality of N-doped source/drain regions and a plurality of P-doped source/drain regions in a semiconducting substrate and performing a first heating process at a first temperature to initially form a first metal silicide region in each of the P-doped source/drain regions. The method further includes performing a second heating process at a second temperature to initially form a second metal silicide region in each of the N-doped source/drain regions, wherein the second temperature is less than the first temperature and performing a third heating process at a third temperature to complete the formation of the first and second metal silicide regions, wherein the third temperature is greater than the first temperature.
摘要:
Disclosed herein are various methods of forming stressed silicon-carbon areas in an NMOS transistor device. In one example, a method disclosed herein includes forming a layer of amorphous carbon above a surface of a semiconducting substrate comprising a plurality of N-doped regions and performing an ion implantation process on the layer of amorphous carbon to dislodge carbon atoms from the layer of amorphous carbon and to drive the dislodged carbon atoms into the N-doped regions in the substrate.
摘要:
Disclosed herein are various semiconductor devices with dual metal silicide regions and to various methods of making such devices. In one example, the device includes a gate electrode and a plurality of source/drain regions formed in a substrate proximate the gate electrode structure. The device further includes a first metal silicide region formed in each of the source/drain regions, wherein the first metal silicide region has an inner boundary and a second metal silicide region formed in each of the source/drain regions, wherein the second metal silicide region is positioned laterally between the inner boundary of the first metal silicide region and an edge of the gate electrode structure.
摘要:
The drain and source regions may at least be partially formed by in situ doped epitaxially grown semiconductor materials for complementary transistors in sophisticated semiconductor devices designed for low power and high performance applications. To this end, cavities may be refilled with in situ doped semiconductor material, which in some illustrative embodiments also provides a desired strain in the channel regions of the complementary transistors.
摘要:
A method is disclosed for fabricating an integrated circuit in a replacement-gate process flow utilizing a dummy-gate structure overlying a plurality of fin structures. The method includes removing the dummy-gate structure to form a first void space, depositing a shaper material to fill the first void space, removing a portion of the plurality of fin structures to form a second void space, epitaxially growing a high carrier mobility material to fill the second void space, removing the shaper material to form a third void space, and depositing a replacement metal gate material to fill the third void space.
摘要:
In a three-dimensional transistor configuration, a strain-inducing isolation material is provided, at least in the drain and source areas, thereby inducing a strain, in particular at and in the vicinity of the PN junctions of the three-dimensional transistor. In this case, superior transistor performance may be achieved, while in some illustrative embodiments even the same type of internally stressed isolation material may result in superior transistor performance of P-channel transistors and N-channel transistors.
摘要:
A MOS device and methods for its fabrication are provided. In one embodiment the MOS device is fabricated on and within a semiconductor substrate. The method includes forming a gate structure having a top and sidewalls and having a gate insulator overlying the semiconductor substrate, a gate electrode overlying the gate insulator, and a cap overlying the gate electrode. An oxide liner is deposited over the top and sidewalls of the gate structure. In the method, the cap is etched from the gate structure and oxide needles extending upward from the gate structure are exposed. A stress-inducing layer is deposited over the oxide needles and gate structure and the semiconductor substrate is annealed. Then, the stress-inducing liner is removed.