摘要:
In one example, a method disclosed herein includes forming a gate electrode structure for a PMOS transistor and a gate electrode structure for a NMOS transistor, forming a plurality of cavities in the substrate proximate the gate electrode structure of the PMOS transistor and performing an epitaxial deposition process to form raised silicon-germanium regions is the cavities. The method concludes with the step of performing a common etching process on the PMOS transistor and the NMOS transistor to define recessed regions in the substrate proximate the gate electrode structure of the NMOS transistor and to reduce the amount of the silicon-germanium material positioned above the surface of the substrate for the PMOS transistor.
摘要:
In one example, a method disclosed herein includes forming a gate electrode structure for a PMOS transistor and a gate electrode structure for a NMOS transistor, forming a plurality of cavities in the substrate proximate the gate electrode structure of the PMOS transistor and performing an epitaxial deposition process to form raised silicon-germanium regions is the cavities. The method concludes with the step of performing a common etching process on the PMOS transistor and the NMOS transistor to define recessed regions in the substrate proximate the gate electrode structure of the NMOS transistor and to reduce the amount of the silicon-germanium material positioned above the surface of the substrate for the PMOS transistor.
摘要:
Disclosed herein are various methods of forming device level conductive contacts to improve device performance and various semiconductor devices with such improved deice level contact configurations. In one example, a device disclosed herein includes a first device level conductive contact positioned in a first layer of insulating material, wherein the first device level conductive contact is conductively coupled to a semiconductor device, a second device level conductive contact positioned above and conductively coupled to the first device level contact, wherein the second device level contact is positioned in a second layer of insulating material, and a first wiring layer for the device that is positioned above and conductively coupled to the second device level conductive contact.
摘要:
In one example, a method disclosed herein includes the steps of forming gate electrode structures for a PMOS transistor and for an NMOS transistor, forming a first spacer proximate the gate electrode structures, after forming the first spacer, forming extension implant regions in the substrate for the transistors and after forming the extension implant regions, forming a second spacer proximate the first spacer for the PMOS transistor. This method also includes performing an etching process with the second spacer in place to define a plurality of cavities in the substrate proximate the gate structure for the PMOS transistor, removing the first and second spacers, forming a third spacer proximate the gate electrode structures of both of the transistors, and forming deep source/drain implant regions in the substrate for the transistors.
摘要:
Disclosed herein are various methods of forming stressed silicon-carbon areas in an NMOS transistor device. In one example, a method disclosed herein includes forming a layer of amorphous carbon above a surface of a semiconducting substrate comprising a plurality of N-doped regions and performing an ion implantation process on the layer of amorphous carbon to dislodge carbon atoms from the layer of amorphous carbon and to drive the dislodged carbon atoms into the N-doped regions in the substrate.
摘要:
One illustrative method disclosed herein includes forming a sacrificial mandrel above a structure, forming a plurality of first sidewall spacers on opposite sides of the sacrificial mandrel, removing the sacrificial mandrel, forming a plurality of second sidewall spacers on opposite sides of each of the first sidewall spacers, and removing the first sidewall spacers to thereby define a patterned spacer mask layer comprised of the plurality of second sidewall spacers.
摘要:
Disclosed herein are various methods of forming stressed silicon-carbon areas in an NMOS transistor device. In one example, a method disclosed herein includes forming a layer of amorphous carbon above a surface of a semiconducting substrate comprising a plurality of N-doped regions and performing an ion implantation process on the layer of amorphous carbon to dislodge carbon atoms from the layer of amorphous carbon and to drive the dislodged carbon atoms into the N-doped regions in the substrate.
摘要:
Embodiments of a method for fabricating an integrated circuit are provided. In one embodiment, the method includes producing a partially-completed semiconductor device including a substrate, source/drain (S/D) regions, a channel region between the S/D regions, and a gate stack over the channel region. At least one raised electrically-conductive structure is formed over at least one of the S/D regions and separated from the gate stack by a lateral gap. The raised electrically-conductive structure is then back-etched to increase the width of the lateral gap and reduce the parasitic fringing capacitance between the raised electrically-conductive structure and the gate stack during operation of the completed semiconductor device.
摘要:
Disclosed herein are various methods of reducing gate leakage in semiconductor devices such as transistors. In one example, a method disclosed herein includes performing an etching process to define a gate insulation layer of a transistor, wherein the gate insulation layer has an etched edge, performing an angled ion implantation process to implant ions into the gate insulation layer proximate the etched edge of the gate insulation layer and, after performing the angled ion implantation process, performing an anneal process.
摘要:
A method of fabricating a semiconductor device structure begins by forming a layer of oxide material overlying a first gate structure having a first silicon nitride cap and overlying a second gate structure having a second silicon nitride cap. The first gate structure corresponds to a p-type transistor to be fabricated, and the second gate structure corresponds to an n-type transistor to be fabricated. The method continues by performing a tilted ion implantation procedure to implant ions of an impurity species in a channel region of semiconductor material underlying the first gate structure, during which an ion implantation mask protects the second gate structure. Thereafter, the ion implantation mask and the layer of oxide material are removed, and regions of epitaxial semiconductor material are formed corresponding to source and drain regions for the first gate structure. Thereafter, the first silicon nitride cap and the second silicon nitride cap are removed.