摘要:
A method of generating a model for simulating the imaging performance of an optical imaging system having a pupil. The method includes the steps of defining the optical imaging system and a process to be utilized by the optical imaging system; and defining a model equation representing the imaging performance of the optical imaging system and the process, where the model equation including a calibrated pupil kernel. The calibrated pupil kernel representing a linear model of the pupil performance.
摘要:
A method for generating models for simulating the imaging performance of a plurality of exposure tools. The method includes the steps of: generating a calibrated model for a first exposure tool capable of estimating an image to be produced by the first exposure tool for a given photolithography process, where the calibrated model includes a first set of basis functions; generating a model of a second exposure tool capable of estimating an image to be produced by the second exposure tool for the photolithography process, where the model includes a second set of basis functions; and representing the second set of basis functions as a linear combination of the first set of basis functions so as to generate an equivalent model function corresponding to the second exposure tool, where the equivalent model function produces a simulated image corresponding to the image generated by the second exposure tool for the photolithography process.
摘要:
A method of generating masks for printing a pattern including a plurality of features having varying critical dimensions. The method includes the steps of: (1) obtaining data representing the pattern; (2) defining a plurality of distinct zones based on the critical dimensions of the plurality of features; (3) categorizing each of the features into one of the plurality of distinct zones; and (4) modifying the mask pattern for each feature categorized into a predefined distinct zone of the plurality of distinct zones.
摘要:
A method of optimizing a process for use with a plurality of lithography systems. The method includes the steps of: (a) determining a calibrated resist model for a given process and a target pattern utilizing a first lithography system; (b) selecting a second lithography system to be utilized to image the target pattern utilizing the given process, the second lithography system capable of being configured with one of a plurality of diffractive optical elements, each of the plurality of diffractive optical elements having corresponding variable parameters for optimizing performance of the given diffractive optical element; (c) selecting one of the plurality of diffractive optical elements and simulating the imaging performance of the second lithography system utilizing the selected one of the plurality of diffractive optical elements, the calibrated resist model and the target pattern; and (d) optimizing the imaging performance of the selected one of the plurality of diffractive optical elements by executing a genetic algorithm which identifies the values of the parameters of the selected one of the plurality of diffractive optical elements that optimizes the imaging of the target pattern.
摘要:
System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, a parallel imaging writer system includes a plurality of spatial light modulator (SLM) imaging units, where each of the plurality of SLM imaging units includes one or more illumination sources, one or more alignment sources, one or more projection lenses, and a plurality of micro mirrors configured to project light from the one or more illumination sources to the corresponding one or more projection lens. The parallel imaging writer system further includes a controller configured to control the plurality of SLM imaging units, where the controller tunes each of the SLM imaging unit individually in writing a mask data to a substrate.
摘要:
System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, the method includes providing a parallel imaging writer system which has a plurality of spatial light modulator (SLM) imaging units arranged in one or more parallel arrays; receiving a mask data pattern to be written to a substrate, processing the mask data pattern to form a plurality of partitioned mask data patterns corresponding to different areas of the substrate, assigning one or more SLM imaging units to handle each of the partitioned mask data pattern, controlling the plurality of SLM imaging units to write the plurality of partitioned mask data patterns to the substrate in parallel, controlling movement of the plurality of SLM imaging units to cover the different areas of the substrate, and controlling movement of the substrate to be in synchronization with continuous writing of the plurality of partitioned mask data patterns.
摘要:
System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, the imaging system includes a plurality of spatial light modulator (SLM) imaging units, where each of the plurality of SLM imaging units includes one or more illumination sources, one or more alignment sources, one or more projection lenses, and a plurality of micro minors configured to project light from the one or more illumination sources to the corresponding one or more projection lens. The imaging system further includes a controller configured to control the plurality of SLM imaging units, where the controller tunes each of the SLM imaging unit individually in writing a mask data to a substrate in a lithography manufacturing process.
摘要:
A method for decomposing a target circuit pattern containing features to be imaged into multiple patterns. The process includes the steps of separating the features to be printed into a first pattern and a second pattern; performing a first optical proximity correction process on the first pattern and the second pattern; determining an imaging performance of the first pattern and the second pattern; determining a first error between the first pattern and the imaging performance of the first pattern, and a second error between the second pattern and the imaging performance of said second pattern; utilizing the first error to adjust the first pattern to generate a modified first pattern; utilizing the second error to adjust the second pattern to generate a modified second pattern; and applying a second optical proximity correction process to the modified first pattern and the modified second pattern.
摘要:
System and method for manufacturing three-dimensional integrated circuits are disclosed. In one embodiment, the method includes providing an imaging writer system that includes a plurality of spatial light modulator (SLM) imaging units arranged in one or more parallel arrays, receiving mask data to be written to one or more layers of the three-dimensional integrated circuit, processing the mask data to form a plurality of partitioned mask data patterns corresponding to the one or more layers of the three-dimensional integrated circuit, assigning one or more SLM imaging units to handle each of the partitioned mask data pattern, and controlling the plurality of SLM imaging units to write the plurality of partitioned mask data patterns to the one or more layers of the three-dimensional integrated circuits in parallel. The method of assigning performs at least one of scaling, alignment, inter-ocular displacement, rotational factor, or substrate deformation correction.
摘要:
A method of determining calibration test patterns to be utilized to calibrate a model for simulating the imaging performance of an optical imaging system. The method includes the steps of defining design rules associated with a given imaging process; defining a model equation representing the imaging performance of the optical imaging system; determining a boundary of an imaging signal space based on the design rules; selecting calibration patterns based on the boundary of the imaging signal space such that the calibration patterns are on the boundary or within the boundary of the imaging signal space; and storing the selected calibration test patterns, where the calibration test patterns are utilized to calibrate the model for simulating the imaging performance of the optical imaging system.