摘要:
High voltage diode-connected gallium nitride high electron mobility transistor structures or Schottky diodes are employed in a network including high-k dielectric capacitors in a solid state, monolithic voltage multiplier. A superjunction formed by vertical p/n junctions in gallium nitride facilitates operation of the high electron mobility transistor structures and Schottky diodes. A design structure for designing, testing or manufacturing an integrated circuit is tangibly embodied in a machine-readable medium and includes elements of a solid state voltage multiplier.
摘要:
Compressively strained silicon is epitaxially grown directly onto a silicon substrate at low temperature using hydrogen to engineer the strain level. Hydrogen dilution may be varied during such growth to provide a strain gradient.
摘要:
A circuit includes a first field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal; and a second field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal. The second field effect transistor and the first field effect transistor are of the same type, i.e., both n-channel transistors or both p-channel transistors. The second drain-source terminal of the first field effect transistor is coupled to the first drain-source terminal of the second field effect transistor; and the gate of the second field effect transistor is coupled to the first drain-source terminal of the second field effect transistor. The resulting three-terminal device can be substituted for a single field effect transistor that would otherwise suffer breakdown under proposed operating conditions.
摘要:
An InxGa1-xAs interlayer is provided between a III-V base and an intrinsic amorphous semiconductor layer of a heterojunction III-V solar cell structure. Improved surface passivation and open circuit voltage may be obtained through the incorporation of the interlayer within the structure.
摘要翻译:在III-V基极和异质结III-V族太阳能电池结构的本征非晶半导体层之间提供In x Ga 1-x As夹层。 可以通过在结构内并入中间层来获得改进的表面钝化和开路电压。
摘要:
A method to minimize edge-related substrate breakage during spalling using an edge-exclusion region where the stressor layer is either non-present (excluded either during deposition or removed afterwards) or present but significantly non-adhered to the substrate surface in the exclusion region is provided. In one embodiment, the method includes forming an edge exclusion material on an upper surface and near an edge of a base substrate. A stressor layer is then formed on exposed portions of the upper surface of the base substrate and atop the edge exclusion material, A portion of the base substrate that is located beneath the stressor layer and which is not covered by the edge exclusion material is then spalled.
摘要:
A base layer of a semiconductor material is formed with a naturally textured surface. The base layer may be incorporated within a photovoltaic structure. A controlled spalling technique, in which substrate fracture is propagated in a selected direction to cause the formation of facets, is employed. Spalling in the [110] directions of a (001) silicon substrate results in the formation of such facets of the resulting base layer, providing a natural surface texture.
摘要:
A method to minimize edge-related substrate breakage during spalling using an edge-exclusion region where the stressor layer is either non-present (excluded either during deposition or removed afterwards) or present but significantly non-adhered to the substrate surface in the exclusion region is provided. In one embodiment, the method includes forming an edge exclusion material on an upper surface and near an edge of a base substrate. A stressor layer is then formed on exposed portions of the upper surface of the base substrate and atop the edge exclusion material, A portion of the base substrate that is located beneath the stressor layer and which is not covered by the edge exclusion material is then spalled.
摘要:
The present disclosure provides a method for forming two device wafers starting from a single base substrate. The method includes first providing a structure which includes a base substrate with device layers located on, or within, a topmost surface and a bottommost surface of the base substrate. The base substrate may have double side polished surfaces. The structure including the device layers is spalled in a region within the base substrate that is between the device layers. The spalling provides a first device wafer including a portion of the base substrate and one of the device layers, and a second device wafer including another portion of the base substrate and the other of the device layer.
摘要:
The generation of surface patterns or the replication of surface patterns is achieved in the present disclosure without the need to employ an etching process. Instead, a unique fracture mode referred to as spalling is used in the present disclosure to generate or replicate surface patterns. In the case of surface pattern generation, a surface pattern is provided in a stressor layer and then spalling is performed. In the case of surface pattern replication, a surface pattern is formed within or on a surface of a base substrate, and then a stressor layer is applied. After applying the stressor layer, spalling is performed. Generation or replication of surface patterns utilizing spalling provides a low cost means for generation or replication of surface patterns.
摘要:
The present disclosure provides a method for forming two device wafers starting from a single base substrate. The method includes first providing a structure which includes a base substrate with device layers located on, or within, a topmost surface and a bottommost surface of the base substrate. The base substrate may have double side polished surfaces. The structure including the device layers is spalled in a region within the base substrate that is between the device layers. The spalling provides a first device wafer including a portion of the base substrate and one of the device layers, and a second device wafer including another portion of the base substrate and the other of the device layer.