Abstract:
A photovoltaic device includes a substrate having a plurality of hole shapes formed therein. The plurality of hole shapes each have a hole opening extending from a first surface and narrowing with depth into the substrate. The plurality of hole shapes form a hole pattern on the first surface, and the hole pattern includes flat areas separating the hole shapes on the first surface. A photovoltaic device stack is formed on the first surface and extends into the hole shapes. Methods are also provided.
Abstract:
A photovoltaic device includes one or more layers of a photovoltaic stack formed on a substrate by employing a high deposition rate plasma enhanced chemical vapor deposition (HDR PECVD) process. Contacts are formed on the photovoltaic stack to provide a photovoltaic cell. Reduced defect zones are disposed adjacent to contact regions in portions of the photovoltaic cell and are formed by an anneal configured to improve overall performance.
Abstract:
A substrate for photovoltaic device includes a textured surface formed from silicon-based material. The textured surface includes a plurality of cones uniformly distributed across the textured surface. The uniformly distributed cones are configured by etching from a top surface of the substrate using a self-assembled solder dot mask evaporated on the substrate prior to etching. The cones are uniformly distributed as a result of gettering a process chamber prior to forming the solder dot mask. The cones have a height/width ratio between about 1 to about 4, and the cones have a density between 108 to 109 cones/cm2.
Abstract translation:用于光伏器件的衬底包括由硅基材料形成的纹理表面。 纹理表面包括均匀分布在纹理化表面上的多个锥体。 均匀分布的锥体通过在蚀刻之前使用在衬底上蒸发的自组装焊点掩模从衬底的顶表面进行蚀刻而配置。 由于在形成焊点掩模之前吸收处理室,锥体均匀分布。 锥体具有约1至约4之间的高度/宽度比,并且锥体具有在108至109锥/ cm 2之间的密度。
Abstract:
A metal oxide semiconductor field effect transistor and method for forming the same include exposing portions on a substrate adjacent to a gate stack, forming a dopant layer over the gate stack and in contact with the substrate in the portions exposed and annealing the dopant layer to drive dopants into the substrate to form self-aligned dopant regions in the substrate. The dopant layer is removed. A metal containing layer is deposited over the gate stack and in contact with the substrate in the exposed portions. The metal containing layer is annealed to drive metal into the substrate to form self-aligned contact regions in a metal alloy formed in the substrate within the dopant regions. The metal layer is then removed.
Abstract:
A method for forming a photovoltaic device includes depositing one or more layers of a photovoltaic stack on a substrate by employing a high deposition rate plasma enhanced chemical vapor deposition (HDR PECVD) process. Contacts are formed on the photovoltaic stack to provide a photovoltaic cell. Annealing is performed on the photovoltaic cell at a temperature and duration configured to improve overall performance.
Abstract:
Methods for forming a photovoltaic device include depositing a p-type layer on a substrate and cleaning the p-type layer by exposing a surface of the p-type layer to a plasma treatment to react with contaminants. An intrinsic layer is formed on the p-type layer, and an n-type layer is formed on the intrinsic layer.
Abstract:
A method for fabricating a photovoltaic device includes applying a diblock copolymer layer on a substrate and removing a first polymer material from the diblock copolymer layer to form a plurality of distributed pores. A pattern forming layer is deposited on a remaining surface of the diblock copolymer layer and in the pores in contact with the substrate. The diblock copolymer layer is lifted off and portions of the pattern forming layer are left in contact with the substrate. The substrate is etched using the pattern forming layer to protect portions of the substrate to form pillars in the substrate such that the pillars provide a radiation absorbing structure in the photovoltaic device.
Abstract:
A method for forming a photovoltaic device includes depositing one or more layers of a photovoltaic stack on a substrate by employing a high deposition rate plasma enhanced chemical vapor deposition (HDR PECVD) process. Contacts are formed on the photovoltaic stack to provide a photovoltaic cell. Annealing is performed on the photovoltaic cell at a temperature and duration configured to improve overall performance.
Abstract:
A photovoltaic device includes a substrate layer having a plurality of three-dimensional structures formed therein providing a textured profile. A first electrode is formed over the substrate layer and extends over the three-dimensional structures including non-planar surfaces. The first electrode has a thickness configured to maintain the textured profile, and the first electrode includes a transparent conductive material having a dopant metal activated within the transparent conductive material. A continuous photovoltaic stack is conformally formed over the first electrode, and a second electrode is formed on the photovoltaic stack.
Abstract:
Methods for forming a photovoltaic device include depositing a p-type layer on a substrate and cleaning the p-type layer by exposing a surface of the p-type layer to a plasma treatment to react with contaminants. An intrinsic layer is formed on the p-type layer, and an n-type layer is formed on the intrinsic layer.