Abstract:
A digital receiver for decoding input data having three states includes a first input coupled to a first data line, a second input coupled to a second data line, a third input coupled to a third data line, and a fourth input coupled to a fourth data line. A first decoder is coupled to a first output, wherein the first decoder is for outputting first data signals in response to the sign of input data on the first data line minus input data on the second line. A second decoder is coupled to a second output, wherein the second decoder is for outputting second data signals in response to the sign of input data on the third data line minus input data on the fourth data line.
Abstract:
A digital receiver for decoding input data having three states includes a first input coupled to a first data line, a second input coupled to a second data line, a third input coupled to a third data line, and a fourth input coupled to a fourth data line. A first decoder is coupled to a first output, wherein the first decoder is for outputting first data signals in response to the sign of input data on the first data line minus input data on the second line. A second decoder is coupled to a second output, wherein the second decoder is for outputting second data signals in response to the sign of input data on the third data line minus input data on the fourth data line.
Abstract:
A method for transmitting a plurality of data bits and a clock signal on a return to zero (RZ) signal includes: transmitting a first voltage that is greater than a first threshold, the first voltage being decodable to first order of data bits; transmitting a second voltage that is between a second threshold and the first threshold, the second voltage being decodable to a second order of data bits; transmitting a third voltage that is between a third threshold and a fourth threshold, the third voltage being decodable to a third order of data bits; transmitting a fourth voltage that is greater in magnitude than the fourth threshold, the fourth voltage being decodable to a fourth order of data bits; and transitioning the clock signal in response to the RZ signal being between the second threshold and the third threshold.
Abstract:
A method for simultaneously transmitting data bits and a clock signal includes converting the combination of the data bits and the clock signal to analog voltages by a digital-to-analog converter. The clock signal are the most significant bit of the digital-to-analog conversion and the data bits are the least significant bit of the digital-to-analog conversion.
Abstract:
A digital system has a dielectric core waveguide that is formed within a multilayer substrate. The dielectric waveguide has a longitudinal dielectric core member formed in the core layer having two adjacent longitudinal sides each separated from the core layer by a corresponding slot portion formed in the core layer The dielectric core member has the first dielectric constant value. A cladding surrounds the dielectric core member formed by a top layer and the bottom layer infilling the slot portions of the core layer. The cladding has a dielectric constant value that is lower than the first dielectric constant value.
Abstract:
A method for simultaneously transmitting data bits and a clock signal includes converting the combination of the data bits and the clock signal to analog voltages by a digital-to-analog converter. The clock signal are the most significant bit of the digital-to-analog conversion and the data bits are the least significant bit of the digital-to-analog conversion.
Abstract:
A method for simultaneously transmitting data bits and a clock signal includes converting the combination of the data bits and the clock signal to analog voltages by a digital-to-analog converter. The clock signal are the most significant bit of the digital-to-analog conversion and the data bits are the least significant bit of the digital-to-analog conversion.
Abstract:
A dielectric waveguide socket is provided with a dielectric waveguide (DWG) stub having a dielectric core member surrounded by dielectric cladding, the DWG stub having an interface end and an opposite mating end. A socket body is coupled to the DWG stub, such that a mounting surface of the socket body is configured to mount the socket body on a substrate such that the core member of DWG stub forms an angle of inclination with the substrate. The socket body is configured to couple with the end of a DWG cable, such that the end of the DWG cable is held in alignment with the mating end of the DWG stub.
Abstract:
A system includes an integrated circuit that has a substrate with a top surface and a bottom surface. Semiconductor circuitry is including a radio frequency (RF) amplifier configured to produce an RF signal or an RF receiver configured to receive an RF signal is formed on the top surface of the substrate. A through-substrate via is coupled to an output of the RF amplifier. A metalized antenna formed on the bottom surface of the substrate is coupled to the through-substrate via. The metalized antenna is configured to launch an electromagnet wave representative of the RF signal into a dielectric waveguide (DWG) when the DWG is coupled to the bottom side of the substrate.
Abstract:
A system includes an electronic device coupled to a mating end of a dielectric wave guide (DWG). The electronic device has a multilayer substrate that has an interface surface configured for interfacing to the mating end of the DWG. A conductive layer is etched to form a dipole antenna disposed adjacent the interface surface. A reflector structure is formed in the substrate adjacent the dipole antenna opposite from the interface surface. A set of director elements is embedded in the mating end of the DWG. Specific spacing is maintained between the dipole antenna and the set of director elements.