Abstract:
The current document is directed to efficient, distributed-search methods and subsystems within distributed computer systems, including computer systems distributed over multiple sets of geographically distributed data centers, each comprising multiple discrete computer systems, such as multi-processor servers. In one implementation, the distributed-search methods and subsystems are implemented locally within participating entities as well as within one or more distributed-search engines. Each search is directed, by a participant, to identify attribute-associated entities within, provided by, connected to, or otherwise accessible to a distributed computing system having attribute values specified or indicated by the search query. Certain attribute values are continuously collected and centrally stored by the one or more centralized distributed-search engines while other attribute values are obtained through information requests distributed among participating entities.
Abstract:
Aspects of the disclosure allocate shares of processing resources or other physical resources among virtual machines (VMs) operating as, for example, virtual desktops on a plurality of host computing devices. Allocations of resources are adjusted based on the user activity, VM activity, and/or application activity detected by an agent executing on each VM. Allocated shares may be boosted, unboosted, or normalized, depending on the type and duration of detected activity, by a resource allocation manager executing on a management server.
Abstract:
Examples described herein enable memory state sharing among a plurality of virtual machines (VM) including a parent VM and a child VM. A request for memory state sharing between the parent VM and the child VM is received, and the parent VM is suspended. The child VM resumes execution of one or more suspended applications. In one example, the child FM is forked with pre-loaded, suspended applications from the parent VM. Aspects of the disclosure offer a high performance, resource efficient solution that outperforms traditional approaches in areas of software compatibility, stability, quality of service control, re-source utilization, and more.
Abstract:
Examples quickly suspend and resume virtual desktops on demand or on schedule. Virtual desktops, or desktops as a service, are provided to users, where the virtual desktop is a forked VM, cloned VM, or otherwise at least a partial duplicate of an existing VM. The virtual desktop points to existing memory maintained by the existing VM, and the virtual desktop only writes to memory the pages that the virtual desktop creates or modifies.
Abstract:
Embodiments provision and customize virtual machines (VMs), such as desktop VMs, without rebooting the desktop VMs. In response to a request to provision the VMs, a computing device creates a clone VM from a parent VM template identified in the request. One or more customization that prompt rebooting of the clone VM are applied to the clone VM. The computing device instantiates a plurality of child VMs from the customized clone VM. A child VM configuration is applied to at least one of the instantiated child VMs without provoking a reboot of those child VMs.
Abstract:
A management technique for input/output operations (JO) leverages a hypervisor's position as an intermediary between virtual machines (VMs) and storage devices servicing the VMs to facilitate improvements in overall I/O performance for the VMs. According to this new I/O management technique, the hypervisor sends write requests from VMs destined for storage devices to an I/O staging device that provides higher I/O performance than the storage devices, for caching in the I/O staging device in a write-back mode. Once the I/O staging device has received and acknowledged the write request, the hypervisor immediately provides an acknowledgement to the requesting VM. Later on and asynchronously with respect to the write requests from the VMs, the hypervisor reads the write data from the I/O staging device and sends it over to the storage devices for storage therein.
Abstract:
Embodiments provision and customize virtual machines (VMs), such as desktop VMs, without rebooting the desktop VMs. In response to a request to provision the VMs, a computing device creates a clone VM from a parent VM template identified in the request. One or more customization that prompt rebooting of the clone VM are applied to the clone VM. The computing device instantiates a plurality of child VMs from the customized clone VM. A child VM configuration is applied to at least one of the instantiated child VMs without provoking a reboot of those child VMs.
Abstract:
The disclosure provides a method for scaling workloads. The method includes receiving information regarding resources of one or more host machines running one or more virtual machines. The method further includes determining, based on the information, to change a quantity of the one or more virtual machines running on the one or more host machines. The method further includes determining an amount to change the quantity of the one or more virtual machines running on the one or more host machines based on utilization of one or more resource types of the one or more host machines, the utilization indicated by the information. The method further includes causing a change in the quantity of the one or more virtual machines running on the one or more host machines by the determined amount.
Abstract:
The disclosure provides an approach for certificate management for cryptographic agility. Embodiments include receiving, by a cryptographic agility system, a cryptographic request related to an application. Embodiments include selecting, by the cryptographic agility system, a cryptographic technique based on contextual information associated with the cryptographic request. Embodiments include determining, by the cryptographic agility system, based on the cryptographic request, a certificate for authenticating a key related to the cryptographic technique. Embodiments include providing, by the cryptographic agility system, the certificate to an endpoint related to the cryptographic request for use in authenticating the key.
Abstract:
The current document is directed to efficient, distributed-search methods and subsystems within distributed computer systems, including computer systems distributed over multiple sets of geographically distributed data centers, each comprising multiple discrete computer systems, such as multi-processor servers. In one implementation, the distributed-search methods and subsystems are implemented locally within participating entities as well as within one or more distributed-search engines. Each search is directed, by a participant, to identify attribute-associated entities within, provided by, connected to, or otherwise accessible to a distributed computing system having attribute values specified or indicated by the search query. Certain attribute values are continuously collected and centrally stored by the one or more centralized distributed-search engines while other attribute values are obtained through information requests distributed among participating entities.