Abstract:
A method for detecting accretion or abrasion on a first measuring tube of a flow measuring device. A first temperature as a function of time is registered via a first temperature sensor, which is arranged on the first measuring tube in such a manner that, between the first temperature sensor and the medium, at least one measuring tube wall of the first measuring tube is embodied. Parallel in time, a second reference temperature as a function of time is registered by a second temperature sensor, which is spaced from the first temperature sensor and thermally coupled to the medium. Therefrom, at least one variable characteristic is determined, and accretion or abrasion on the first measuring tube is detected, if the at least one determined characteristic variable or a variable derived therefrom deviates by more than a limit value from a predetermined reference variable.
Abstract:
A measuring tube, a measuring system and a method for determining and/or monitoring flow through a measuring tube, comprising a measuring tube, on which ultrasonic transducers are releasably placeable. The ultrasonic transducers transmit and/or receive ultrasonic signals, which pass through the measuring tube approximately coaxially to the measuring tube axis. A connecting line between the centers of the ultrasonic transducers situated at an angle relative to the measuring tube axis and extends on a side of the measuring tube axis, on which the measuring tube outlet is located.
Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; and a first oscillation sensor for registering vibrations of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the exciter mechanism for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and/or by means of the driver signal, as well as with application of a pressure, measured value (Xp1), which represents a first pressure, pRef, reigning in the flowing medium, a pressure, measured value (Xp2), which, in turn, represents a static second pressure, pcrit, reigning in the flowing medium.
Abstract:
A measuring transducer, comprises at least one measuring tube for conveying a flowing medium. The measuring tube vibrates at least at times during operation. The measuring transducer further comprises a sensor arrangement, which serves to register oscillations of the measuring tube. The measuring tube extends with an oscillatory length between an inlet-side, first measuring tube end and an outlet-side, second measuring tube end, and, during operation, oscillates about an oscillation axis, which is parallel to or coincides with an imagined connecting axis which imaginarily connects the two measuring tube ends. By means of a first oscillation sensor, which is arranged on the measuring tube, the sensor arrangement produces a first primary signal representing vibrations of the measuring tube, and by means of a second oscillation sensor, which is arranged on the measuring tube spaced from the first measuring sensor, the sensor arrangement produces a second primary signal representing vibrations of the measuring tube. The oscillation sensors of the sensor arrangement are placed in the measuring transducer in such a way that a measuring length of the measuring transducer corresponds to less than 65% especially less than 55% of the oscillatory length, and greater than 25%, especially greater than 30% of the oscillatory length.
Abstract:
Systems and methods are described for managing bit errors present in an encoded bit stream representative of a portion of an audio signal, wherein the encoded bit stream is received via a channel in a wireless communications system. The channel may comprise, for example, a Synchronous Connection-Oriented (SCO) channel or an Extended SCO (eSCO) channel in a Bluetooth® wireless communications system.
Abstract:
A power system includes a plurality of power generation units configured to generate power from a renewable energy resource and at least one controller configured to be coupled to at least one power generation unit of the plurality of power generation units. The power system also includes a server that is configured to be communicatively coupled to the at least one controller. The server is configured to receive operational data from the at least one controller, transmit the operational data to a user, and control an operation of the plurality of power generation units.
Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; and a first oscillation sensor for registering vibrations of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the exciter mechanism for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and/or by means of the driver signal, as well as with application of a pressure, measured value (Xp1), which represents a first pressure, pRef, reigning in the flowing medium, a pressure, measured value (Xp2), which, in turn, represents a static second pressure, pcrit, reigning in the flowing medium.
Abstract:
Methods and apparatuses for compensating for differences in communication system transmit and receive clock signal frequencies include buffer timing modification and sample addition. In buffer timing modification, a buffer clock signal is interrupted as needed to slow the rate of data through the buffer. In sample addition, pseudo samples are inserted into a data stream to compensate for timing differences.
Abstract:
A power system includes a plurality of power generation units configured to generate power from a renewable energy source and a server that includes a display. The server is configured to establish a communication with the plurality of power generation units and display a status of the plurality of power generation units on the display.
Abstract:
A wind turbine includes a wind turbine blade and a foreign matter detection device disposed on the wind turbine blade for detecting an accumulation of foreign matter on the wind turbine blade. The detection device automatically sends an indication when a threshold level of foreign matter accumulation is detected. A wind farm control system can display a color coded live plot of all wind turbines in a wind farm system, with a indication of foreign matter accumulation for each turbine.