摘要:
A dual-channel hot standby system and a method for carrying out dual-channel hot standby, the system comprises a hot standby status management layer including two hot standby management units, an application processing layer including two application processors, and a data communication layer including two communicators; the hot standby status management layer is used for controlling the setting and switching between a active status and a standby status of the two application processors, monitoring the working status of the data communication layer, and carrying out synchronization of the control cycles for the two channels of the system; wherein one of the hot standby management units controls one of the application processors, and together constitute a channel of the system therewith; the data communication layer is used for receiving data from outside, and forwarding the data to the application processing layer. The present invention avoids the occurrence of “dual-channel-active” or “dual-channel-standby” status; ensures synchronization of the control cycles of two channels; reduces the time of the system for responding to breakdowns; meets the real-time requirements; enhances the reliability and availability of the system; and ensures a seamless switching between active and standby statuses.
摘要:
The present invention provides a modeling method of a SPICE model series of a Silicon On Insulator (SOI) Field Effect Transistor (FET), where auxiliary devices are designed and fabricated, electrical property data is measured, intermediate data is obtained, model parameters are extracted based on the intermediate data, a SPICE model of an SOI FET of a floating structure is established, model parameters are extracted by using the intermediate data and data of the auxiliary devices, a macro model is complied, and a SPICE model of an SOI FET of a body leading-out structure is established. The modeling method provided in the present invention takes an influence of a parasitic transistor of a leading-out part in a body leading-out structure into consideration, and model series established by using the method can more accurately reflect actual operating conditions and electrical properties of the SOI FET of a body leading-out structure and the SOI FET of a floating structure, thereby improving fitting effects of the models.
摘要:
A method may include constructing an auxiliary graph for a network comprising a plurality of network elements, the network elements having an Internet Protocol layer, a lower layer, and a wavelength layer, the auxiliary graph including a plurality of directed edges, the plurality of directed edges indicative of connectivity of components of the plurality of network elements. The method may further include: (i) deleting directed edges from the auxiliary graph whose available bandwidth is lower than the required bandwidth of a selected demand; (ii) finding a path for the demand on the auxiliary graph via remaining directed edges; (iii) deleting at least one directed edge of the auxiliary graph on the wavelength layer along the path; (iv) adding lower layer lightpath edges to the auxiliary graph for a lower layer lightpath for the path; and (v) converting lower layer lightpaths to Internet Protocol lightpaths if a conversion condition is satisfied.
摘要:
A hybrid orientation inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Si (110) and p-type Si(100), respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. The device structure according to the prevent invention is quite simple, compact and highly integrated. In an inversion mode, the devices have different orientation channels, the GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, and prevent polysilicon gate depletion and short channel effects.
摘要:
The present invention discloses an ESD protection structure in a SOI CMOS circuitry. The ESD protection structure includes a variety of longitudinal (vertical) PN junction structures having significantly enlarged junction areas for current flow. The resulting devices achieve increased heavy current release capability. Processes of fabricating varieties of the ESD protection longitudinal PN junction are also disclosed. Compatibility of the disclosed fabrication processes with current SOI technology reduces implementation cost and improves the integration robustness.
摘要:
The present invention discloses a method of reducing floating body effect of SOI MOS device via a large tilt ion implantation including a step of: (a) implanting ions in an inclined direction into an NMOS with a buried insulation layer forming a highly doped P region under a source region of the NMOS and above the buried insulation layer, wherein the angle between a longitudinal line of the NMOS and the inclined direction is ranging from 15 to 45 degrees. Through this method, the highly doped P region under the source region and a highly doped N region form a tunnel junction so as to reduce the floating body effect. Furthermore, the chip area will not be increased, manufacturing process is simple and the method is compatible with conventional CMOS process.
摘要:
The present invention discloses a SOI MOS device having BTS structure and manufacturing method thereof. The source region of the SOI MOS device comprises: two heavily doped N-type regions, a heavily doped P-type region formed between the two heavily doped N-type regions, a silicide formed above the heavily doped N-type regions and the heavily doped P-type region, and a shallow N-type region which is contact to the silicide; an ohmic contact is formed between the heavily doped P-type region and the silicide thereon to release the holes accumulated in body region of the SOI MOS device and eliminate floating body effects thereof without increasing the chip area and also overcome the disadvantages such as decreased effective channel width of the devices in the BTS structure of the prior art. The manufacturing method comprises steps of: forming a heavily doped P-type region via ion implantation, forming a metal layer above the source region and forming a silicide via the heat treatment between the metal layer and the Si underneath. The device in the present invention could be fabricated via simplified fabricating process with great compatibility with traditional CMOS technology.
摘要翻译:本发明公开了一种具有BTS结构的SOI MOS器件及其制造方法。 SOI MOS器件的源极区域包括:两个重掺杂N型区域,形成在两个重掺杂N型区域之间的重掺杂P型区域,在重掺杂N型区域上形成的硅化物, 掺杂P型区域和与硅化物接触的浅N型区域; 在重掺杂的P型区域和其上的硅化物之间形成欧姆接触以释放积聚在SOI MOS器件的体区中的空穴,并且消除其浮体效应而不增加芯片面积,并且还克服了诸如降低有效性 现有技术的BTS结构中的设备的信道宽度。 该制造方法包括以下步骤:通过离子注入形成重掺杂的P型区,在源区上方形成金属层,并通过金属层与Si之间的Si之间的热处理形成硅化物。 本发明中的器件可以通过简化的制造工艺制造,与传统CMOS技术具有很好的兼容性。
摘要:
The present invention discloses a MOS structure with suppressed floating body effect including a substrate, a buried insulation layer provided on the substrate, and an active area provided on the buried insulation layer comprising a body region, a first conductive type source region and a first conductive type drain region provided on both sides of the body region respectively and a gate region provide on top of the body region, wherein the active area further comprises a highly doped second conductive type region between the first conductive type source region and the buried insulation layer. For manufacturing this structure, implant ions into a first conductive type source region via a mask having an opening thereon forming a highly doped second conductive type region under the first conductive type source region and above the buried insulation layer. The present invention will not increase chip area and is compatible with conventional CMOS process.
摘要:
A GAA (Gate-All-Around) CMOSFET device includes a semiconductor substrate, a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The surfaces of the first channel and the second channel are substantially surrounded by the gate region. A buried insulation layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the semiconductor substrate to isolate them from one another. The structure is simple, compact and highly integrated, has high carrier mobility, and avoids polysilicon gate depletion and short channel effect.
摘要:
A hybrid orientation accumulation mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of p-type Si(110) and n-type Si(100), respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. The device structure according to the prevent invention is quite simple, compact and highly integrated. In an accumulation mode, current flows through the overall racetrack-shaped channel. The disclosed device results in high carrier mobility. Meanwhile polysilicon gate depletion and short channel effects are prevented, and threshold voltage is increased.