摘要:
A production method and a production apparatus for stable mass production of nanocarbon are provided. In a production chamber (107), a graphite rod (101) having a cylindrical shape is fixed to a rotation apparatus (115), and is made to be capable of rotating with the length direction of the graphite rod (101) serving as an axis, and also moving to the right or the left in the length direction. The side surface of the graphite rod (101) is irradiated with a laser beam (103) from a laser light source (111), and a nanocarbon collecting chamber (119) is disposed in the direction of generation of plumes (109). On the other hand, the surface irradiated with the laser beam (103) among the side surfaces of the graphite rod (101) is speedily rotated by the rotation apparatus (115) and is flattened by a cutting tool (105). Cut dusts of the graphite rod (101) generated by the cutting tool (105) are collected into a cut graphite collecting chamber (121) and separated from the generated carbon nanohorn aggregates (117).
摘要:
The methods and apparatuses for producing carbon black. The invention uses both heating and cooling zones to prevent the precipitation of solids onto equipment surfaces until they are efficiently removed from the gas phase, via one or more heat exchangers. Each heat exchanger may be regenerated to melt off the solids when the amount collected becomes excessive. A storage plenum is available under each heat exchanger to store the melted solids until final removal to avoid the need to open the equipment for the removal of the unwanted solids.
摘要:
This invention relates generally to a method for producing self-assembled objects comprising single-wall carbon nanotubes (SWNTs) and compositions thereof. In one embodiment, the present invention involves a three-dimensional structure of derivatized single-wall nanotube molecules that spontaneously form. It includes several component molecule having multiple derivatives brought together to assemble into the three-dimensional structure. In another embodiment, objects may be obtained by bonding functionally-specific agents (FSAs) groups of nanotubes into geometric structures. The bond selectivity of FSAs allow selected nanotubes of a particular size or kind to assemble together and inhibit the assembling of unselected nanotubes that may also be present.
摘要:
The present invention provides a method and apparatus for maintaining the active life of a catalyst in organic feed processing by applying a series of electromagnetic radiation pulses to the catalyst in a reactor. The pulsing of the catalyst selectively heats and cools the catalyst and can regulate the relative internal pressure of the catalyst particles to stimulate the acceleration of oil macromolecules mass-exchange through the catalyst pores and surface. This allows for the removal of cracked oil molecules from the particles. The application of electromagnetic pulses also regulates the activity of the catalyst. The electromagnetic radiation reduces the formation of coke on the catalyst and increases the life of the catalyst in the reactor. Further, the present invention provides a method and apparatus for removing water and salt from an organic feed. Water and salt is removed by applying a series of electromagnetic radiation pulses to the organic feed. A first pulse condenses water contained in the feed and induces salt to dissolve in the condensed water. A second pulse vaporizes a portion of the condensed water droplets to bring the droplets to the surface of the organic feed.
摘要:
This invention relates generally to a forming an array of single-wall carbon nanotubes (SWNT) in an electric field and compositions thereof. In one embodiment, a purified bucky paper of single-wall carbon nanotubes is used as the starting material. Upon oxidative treatment of the bucky paper surface, many tube and/or rope ends protrude up from the surface of the paper. Disposing the resulting bucky paper in an electric field results in the protruding tubes and or ropes of single-wall carbon nanotubes aligning in a direction substantially perpendicular to the paper surface. These tubes tend to coalesce to form a molecular array. In another embodiment, a molecular array of SWNTs can be made by “combing” the purified bucky paper starting material with a sharp microscopic tip to align the nanotubes.
摘要:
This invention relates generally to forming a patterned array of single-wall carbon nanotubes (SWNT). In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of single-wall carbon nanotubes from each microwell.
摘要:
Improvements to chemical reaction systems provide for the production of commercial quantities of chemical products, such as chemical powders. The improved chemical reaction systems can accommodate a large reactant flux for the production of significant amounts of product. Preferred reaction systems are based on laser pyrolysis. Features of the system provide for the production of highly uniform product particles.
摘要:
The manufacture of pure, fine spherical powders has always been a problem for many materials, particularly for high-melting and highly reactive materials such as titanium, tantalum, vanadium and zirconium. The present invention provides a process and apparatus for producing such powders by rapidly heating course powders containing a gas or gases to near or above their melting point, whereby the contained gas erupts explosively to form many fine particles of the host material. The fine particles are typically, but not necessarily spheroidal, depending upon the process conditions at the time of eruption and immediately thereafter. Methods are described for producing, collecting, handling, storing and passivating said fine powders.
摘要:
This invention relates generally to a single-wall carbon nanotube (SWNT) purification process and more particularly to a purification process that comprises heating the SWNT-containing felt under oxidizing conditions to remove the amorphous carbon deposits and other contaminating materials. In a preferred mode of this purification procedure, the felt is heated in an aqueous solution of an inorganic oxidant, such as nitric acid, a mixture of hydrogen peroxide and sulfuric acid, or a potassium permanganate. Preferably, SWNT-containing felts are refluxed in an aqueous solution of an oxidizing acid at a concentration high enough to etch away amorphous carbon deposits within a practical time frame, but not so high that the single-wall carbon nanotube material will be etched to a significant degree. When material having a high proportion of SWNT is purified, the preparation produced will be enriched in single-wall nanotubes, so that the SWNT are substantially free of other material.
摘要:
This invention relates to method for improving selectivity in liquid phase chemical reactions by flowing a reaction solution through a solution reaction column packed with particles having a multiplicity of nanometer-order pores, wherein the chemical reaction solution containing molecules to be reacted is flowed through mesopores having diameter on the order of several nanometers and length on the order of several ten nanometers, while simultaneously subjected to activating of the reaction thereof with reaction-initiating/accelerating means during the process; and a solution flow reaction system therefor.