Abstract:
Embodiments are directed to receiving, by a computing device comprising a processor, registration information associated with a tenant of a building and at least one user device, determining, by the computing device, that the at least one user device is within a threshold distance of the building, causing, by the computing device, an identity of the tenant to be provided by the at least one user device based on the determination that the at least one user device is within the threshold distance of the building, and causing, by the computing device, an elevator car to be dispatched to a floor of the building on which the tenant is located.
Abstract:
An elevator system is provided with a remote hall call registering device by use of which an elevator passenger performs a hall call registration in a position at a prescribed distance from a hall. A moving time comparison device compares the predicted moving time Te of the elevator car with the predicted walking time Tw in the case where the floor on which a remote hall call registering device is installed is set as a parking floor. A standby operation go/no go determination device makes a determination as to whether or not to perform a standby operation based on the result of the comparison of the moving time comparison device, and carries out a standby operation after responses to all calls have been finished only in the case where the standby operation go/no go determination device made a determination to the effect that a standby operation should be performed.
Abstract:
Provided are a group control method and a group control device capable of efficiently controlling the operation of elevators in diversified traffic situations and under a variety of specification conditions required for a group management system. A plurality of elevators are placed in service for a plurality of floors, an evaluation index for a newly made hall call is calculated, and the best suited car is selected and assigned to the hall call based on the evaluation index in the group control method of elevators. A waiting time expectation value of all passengers on all floors for each direction, either that have already occurred or that are expected to occur within a predetermined time period, is taken as the evaluation index, the waiting time expectation value being the expectation value for the sum or the average of waiting time.
Abstract:
An elevator group control apparatus performs operation control of a plurality of elevators by detecting a downward traffic flow ratio of traffic flows departing downward from floors higher than a prescribed main floor in the total traffic flow departing from one floor to another. If the downward traffic flow ratio is not less than a prescribed reference value, a standby mode for downward traffic flow is made effective, in which at least one elevator car is caused to be on standby on a floor higher than the main floor and at least one elevator car is caused to be on standby on the main floor.
Abstract:
An exemplary method of assigning calls to elevator cars includes ensuring that a passenger separation requirement is satisfied. The passenger separation requirement is satisfied when a passenger belonging to one service group is not carried in the same elevator car simultaneously with another passenger belonging to a different service group, for example. A call is assigned to an elevator car to carry a passenger belonging to the one service group while the elevator car is assigned to carry or is already carrying another passenger belonging to the different service group.
Abstract:
According to one embodiment, an elevator group control apparatus performs group control of operations of cars. The apparatus includes a power consumption calculation unit that calculates power consumption when each of the cars is run according to the operation curve on the basis of object data stored in the object data storage unit and an operation curve created by the operation curve creation unit, a distributed waiting controller that sets a car in a waiting state among the cars as a distributed waiting target car and outputs a distributed waiting instruction to move the target car to a distributed waiting floor, and a distribution instruction controller that obtains, from the power consumption calculation unit, power consumption when the distributed waiting target car is moved to the distributed waiting floor and, on the basis of the power consumption, permits or inhibits a distributed waiting instruction output from the distributed waiting controller.
Abstract:
It is an object of the present invention to provide a control apparatus for a one-shaft multi-car system elevator in which a plurality of cars operate in one shaft, the control device being capable of efficient group control while avoiding collisions and minimizing the occurrence of confinement of passengers. The control apparatus includes approaching direction traveling prohibiting means 1D for prohibiting the cars from traveling in a direction in which the cars approach each other in the same shaft, and door open standing-by means 1E for causing the car to stand by with its doors open if the car is prohibited by the approaching direction traveling prohibiting means from traveling and if any passenger is present in the car.
Abstract:
An elevator group control apparatus collectively controls an elevator system where at least two cars can travel in each shaft independently of each other. The apparatus has a destination floor registration device installed at each hall for passengers to register destination floors and to indicate to passengers which cars will serve respectively for the registered destination floors. Priority zones and a shared zone for upper cars and for lower cars are set; a judgment is made as to whether the shared zone set can be entered by an upper or lower car; a car is put on standby based on the judgment a car is sent to a withdrawal floors, as necessary, after a service is completed. A car is selected as a candidate for assignment to a destination call if, according to the destination to be served by each car and the zones set for each car, so that the car would cause neither collision nor safety stop; and a car is assigned based on the selection.
Abstract:
It is an object of the present invention to provide a control apparatus for a one-shaft multi-car system elevator in which a plurality of cars operate in one shaft, the control device being capable of efficient group control while avoiding collisions and minimizing the occurrence of confinement of passengers. The control apparatus includes approaching direction traveling prohibiting means 1D for prohibiting the cars from traveling in a direction in which the cars approach each other in the same shaft, and door open standing-by means 1E for causing the car to stand by with its doors open if the car is prohibited by the approaching direction traveling prohibiting means from traveling and if any passenger is present in the car.
Abstract:
The invention concerns a method for solving an optimization task consisting of a plurality of sub-functions in the control of the operation of an apparatus. In the method, a set of a plurality of solution alternatives is generated and, according to the method, each sub-function is normalized. Normalized cost functions of the sub-functions are generated for each solution alternative for solving the optimization task, and based on the normalized cost functions of the sub-functions, a set of solutions to the optimization task is formed. From the set of solutions, the best solution is selected and the apparatus is controlled in accordance with the solution thus selected.