Abstract:
A rotary lobed rotor pump has externally adjustable wearplates in the rotor casing juxtaposed to the parallel ends of rotating lobed rotors. Resilient members such as Belleville springs are adjusted by compression by means external of the rotor casing so that the springs move the wearplate(s) into a design clearance with the parallel rotor ends. No pump disassembly is required to accurately set the clearance. An internal pressure surge by-pass is provided which permits outward movement of either or both wearplates resulting in an increased gap with the rotor ends causing a decrease in the rate of rise in fluid pressure in the internal rotor casing cavities in effect causing rotor slippage.
Abstract:
An air cooled rotor for a rotary internal combustion engine, such as a Wankel type engine, in which the housing has a two-lobed epitrochoidal bore which forms the cavity, the rotor having an outer profile of generally equilateral triangular shape with outwardly curved sides, such as convexly curved sides, and the rotor being mounted on an eccentric journal of a main shaft and being geared to rotate in a planetary manner within the cavity at one third of the speed of rotation of the main shaft, the rotor comprising a body and an insert secured together by one or more rigid fasteners which extend into a passage part of the insert from a passage part of the body which opens to the outer profile of the rotor, the or each fastener extending transverse to the axis of rotation of the rotor, at an angle of between 70.degree. and 90.degree. to the axis.
Abstract:
A rotor for a rotary engine of the kind comprising a rotor which rotates in a cavity to form working chambers within the cavity which vary in volume as the rotor rotates, the rotor comprising a body having, in a plane transverse to the axis of rotation of the rotor, an outer profile of generally equilateral triangular shape with outwardly curved sides and an inner profile providing part peripheral location formations in regions of the mid-points of the rotor sides in engagement with an insert, the insert providing a bearing part and an indexing gear of the rotor, the inner profile of the body adjacent each apex of the rotor being radially outwards of the inserts of the entire axial length of the rotor thereby providing a gap between the location portions so that axial cooling passages are formed bounded by the rotor body and the insert.
Abstract:
A rotary internal combustion engine and particularly an improved rotor construction for such engine and method of making is disclosed. A coating system is applied at least to the flank surfaces of the rotor which face the variable volume combustion chambers of the engine, the system serving to reduce heat flow to the oil lubrication system within the rotor and to quench heat build-up on the above surfaces to prevent pre-ignition. The engine is permitted to run at a somewhat higher operating temperature resulting in increased efficiency, better fuel comsumption and reduction of emissions.
Abstract:
A nodular graphite cast iron, a method for fabricating a vane for a rotary compressor using nodular graphite cast iron, and a vane for a rotary compressor using the same are provided. The nodular graphite cast iron includes 3.4 wt % to 3.9 wt % of carbon (C), 2.0 wt % to 3.0 wt % of silicon (Si), 0.3 wt % to 1.0 wt % of manganese (Mn), 0.1 wt % to 1.0 wt % of chromium (Cr), 0.04 wt % to 0.15 wt % of titanium (Ti), less than 0.08 w % of phosphorus (P), less than 0.025 wt % of sulphur (S), 0.03 wt % to 0.05 wt % of magnesium (Mg), 0.02 wt % to 0.04 wt % of rare earth resource, iron (Fe) and impurities as the remnants, and includes a bainite matrix structure, nodular graphite, and 15 vol % to 35 vol % of carbide.
Abstract:
A refrigerant compressor includes a first layer (24) composed of a single layer of chromium, a second layer (25) composed of an alloy layer of chromium and tungsten carbide, a third layer (26) composed of an amorphous carbon layer containing at least one of tungsten and tungsten carbide, and a fourth layer (27) composed of an amorphous carbon layer containing carbon and hydrogen without metals, which are sequentially formed on a surface of a sliding member (13b) of a compression mechanism formed of tool steel. The second layer (25) is formed to have a chromium content higher on a side of the first layer (24) than a side of the third layer (26), and have a tungsten carbide content higher on the side of the third layer (26) than the side of the first layer (24). In addition, the third layer (26) is formed to have a tungsten content or a tungsten carbide content higher on a side of the second layer (25) than a side of the fourth layer (27).
Abstract:
A scroll compressor includes a scroll member having a base and a generally spiral wrap that extends from the base to define a portion of a compression chamber. The scroll member is made of a cast iron material comprising a microstructure having graphite nodules.
Abstract:
A liquid ring pump is provided that includes an annular housing having an inner surface forming a housing cavity. The annular housing is filled with an operating fluid during operation of the pump. The operating fluid forms an eccentric liquid ring in the annular housing during operation of the pump. A rotor is disposed in the housing cavity and includes a plurality of rotor blades. A shaft extends into the annular housing into the housing cavity. The plurality of rotor blades extend radially outward from the shaft toward the inner surface of the annular housing. A liner formed from a corrosion resistant material is disposed substantially flush with at least a portion of the annular housing inner surface opposite a plurality of rotor blade ends.
Abstract:
The rotary piston type internal combustion engine (E1) comprises an output shaft (1), a rotor (2), a housing (4), an annular operation chamber (5) formed by the rotor and housing on at least one side of the rotor in the axial direction of the output shaft for constituting an intake operation chamber, a compression operation chamber, a combustion operation chamber, and an exhaust operation chamber, a pressuring/pressured member (6) provided to the rotor for partitioning the annular operation chamber, two operation chamber partitions (7, 8) provided to the housing for partitioning the annular operation chamber, biasing mechanisms for biasing the operation chamber partitions toward their respective advanced positions, an intake port (11), an exhaust port (12), and a fuel injector (14), wherein the pressuring/pressured member (6) is constituted by an arc-shaped partition having first and second inclined surfaces and the operation chamber partitions (7, 8) are each constituted by a reciprocating partition reciprocating in parallel to the axis of the output shaft.
Abstract:
A single screw compressor structure includes a screw rotor and a casing, which houses the screw rotor. A tapered outer circumferential surface of the screw rotor has a plurality of helical grooves, with an outer diameter that increases from an inlet side toward a discharge side. The casing includes an outer tube member having a circular inner hole to form an interior, and an inner tube member is fixed to the interior of the outer tube member. The inner tube member has a tapered inner surface that opposes the tapered outer circumferential surface of the screw rotor. A single screw compressor further including a gate rotor is assembled mesh between the screw rotor and the gate rotor, aligning the tapered outer and inner circumferential surfaces relative to one another, and integrally coupling the outer and inner tube members to each other.