Abstract:
A metering module, or a system employing such, for monitoring fluid flow with a laser light source, a light detector and a processor, wherein the fluid may be a gas or liquid. A valve section and a grating section including a fiber Bragg grating (FBG) are provided. The valve section applies strain on the FBG that is representative of the flow of the fluid. An optical fiber couples a probing laser signal to the FBG and the FBG reflects a portion back as a return laser signal that the optical fiber couples to the light detector for detection and processing.
Abstract:
The disclosed method of measuring the flow of a fluid with a porous particulate ceramic tracer and an optical instrument is characterized in that spherical particles having diameters in the range of 0.5 to 150 μm are used as the tracer. Inasmuch as the tracer particles for flow measurement are spherical, the sectional area of scattered light to be detected by an optical sensor means is constant regardless of the orientation of particles. Furthermore, spherical particles have no surface irregularities that might cause concatenation so that individual particles are not agglomerated in tracking a fluid flow, thus contributing to improved measurement accuracy.
Abstract:
A method and apparatus for fluid flow straightening and measurement introduces a high beta nozzle or venturi in-line with existing conduit. A fluid velocity measuring device is positioned in the throat of the high beta nozzle and measurements of velocity at multiple points in a plane perpendicular to the direction of fluid flow are taken. The velocity data points are then averaged and produce an output signal from which fluid flow rate can be determined.
Abstract:
A method and system for aligning optical fibers includes aperturing the optical beams from the optical fibers at two points along a path. Photodetectors are placed on the apertures and the positions of the tips of the optical fibers are controlled using actuators to center the optical beams within the apertures.
Abstract:
The flow meter is a device having a laser Doppler anemometer (LDA) which measures the instantaneous center line velocity of fluid flow in a pipe and processes the instantaneous velocity so obtained to compute the volumetric flow rate, mass rate, and other flow characteristics as instantaneous quantities and/or integrated over a time interval using an electronic processing method which provides an exact solution to the Navier-Stokes equations for any periodically oscillating flow. The flow meter is particularly adapted for measuring the flow characteristics of high pressure automotive fuel injection systems. Three embodiments of the flow meter are described, including a stationary stand for off-line bench testing flow rate in a fuel injection system, a portable flow meter for inline testing in a vehicle's fuel line, and an on-board flow meter sensor connected to an engine control module.
Abstract:
The disclosed method of measuring the flow of a fluid with a porous particulate ceramic tracer and an optical instrument is characterized in that spherical particles having diameters in the range of 0.5 to 150 nullm are used as the tracer. Inasmuch as the tracer particles for flow measurement are spherical, the sectional area of scattered light to be detected by an optical sensor means is constant regardless of the orientation of particles. Furthermore, spherical particles have no surface irregularities that might cause concatenation so that individual particles are not agglomerated in tracking a fluid flow, thus contributing to improved measurement accuracy.
Abstract:
A method for determining corrected gas flow values from measured physical gas flow values is provided. A laser-based sensor system is deployed in a duct through which the gas moves. The sensor system includes two or more pairs of photoemitters/photodetectors that emit and detect light beams. Spectral changes in the light beams associated with the laser sensor system caused by the properties of the gas passing through the duct are referenced to known gas physical properties, including density. That information as well as the velocity of the gas and the temperature in the duct are analyzed and manipulated in a programmed processing unit. The processing unit is programmed to calculate a corrected gas flow value from the information obtained directly and indirectly from the detected light beams. The system and the method for obtaining the corrected flow value are suitable for use in the determination of corrected airflow through a duct, including a duct of an aircraft engine.
Abstract:
An optical design for delivering or receiving light from a fluid being measured is disclosed. The optical design is capable of immersion in the fluid being measured, and is capable of operating with fluids that have a different index of refraction. The optical design includes a solid prism of optical material to which a fiber optic attaches by a suitable adhesive. In an optical delivery system, light from the fiber enters the prism and reflects off an internal mirror to a second internal reflective surface. The second internal reflective surface focuses the light to a fixed point through an exit surface of the prism. The second internal reflective surface may in the shape of an ellipse, or may comprise a diffractive surface. The exit surface has a spherical concave shape that is centered on the fixed point where the light is focused, so that light passes through the exit surface at substantially ninety degrees. In an optical collection system, light from a point enters the prism at an entry surface, that is spherically concave so that light passes through the entry surface at substantially ninety degrees. Light then reflects from a first internal reflective surface that may be a diffractive lens or an elliptically shaped lens, to thereby focus the light received from the point. Light reflecting from the first internal reflective surface is received at a second mirrored surface, where the light is reflected to the base of the prism, where the fiber optic attaches.
Abstract:
A system is disclosed for measuring volume flow through vessel. A longitudinal area of a vessel in a body is scanned using a color Doppler imaging method, such that an imaging plane is formed approximately through the center of said vessel. A number of color pixels in a scanned cross-section of the vessel in which volume flow is detected are counted and tabulated. From this number of pixels, an observed cross-sectional area of the vessel is determined. Frequency shift information for each of the counted pixels is determined and these frequency shifts are spatially averaged. The instantaneous volume flow through the vessel is then computed from the cross-sectional area and frequency shift information. The volume flow for several different samples is computed. The instantaneous volume flows from each color Doppler imaging frame are temporally averaged over one or more integral cardiac cycles to compute a temporally-averaged volume flow.
Abstract:
Single point optical probes for measuring three-phase characteristics of fluid flow in a hydrocarbon well and methods of processing signals generated by the probe are disclosed. A probe having a single fiber optic is coupled to a light source and apparatus for detecting reflectance and fluorescence. Light is delivered to the tip of the probe where it either is internally reflected in the probe or exits the probe and illuminates the fluid (liquid) ambient the probe tip. If the fluid at the probe tip is oil, the light exits the probe, illuminates the oil, and causes the oil to fluoresce. If the fluid is water, no fluorescence occurs. If the fluid is gas, at least some light is internally reflected in the probe. A detection system including at least one beam splitter and fluorescence and reflectance detectors is provided in conjunction with the probe. Preferably, the fluorescence detector is coupled to the fiber optic by a wavelength division multiplexer. A preferred signal processing system for detecting oil, gas, and water provides two quasi-binary indicators: gas/liquid and oil/not oil. Three of the four possible indications (gas-not oil, liquid-not oil, and liquid-oil) give reliable results indicating whether the fluid at the probe tip is gas, water, or oil. One of the four possible indications (gas-oil) can be considered an error indicator.