Abstract:
Embodiments described herein generally relate to devices, systems and methods for measuring the dose remaining in a drug delivery device that is used for delivering a dose to a patient. In some embodiments, a dose measurement system for measuring the liquid volume in a container includes a plurality of light sources which are disposed and configured to emit electromagnetic radiation toward the container. A plurality of sensors are located in the apparatus that are optically coupleable to the plurality of light sources and are disposed and configured to detect the electromagnetic radiation emitted by at least a portion of the light sources. The apparatus also includes a processing unit configured to receive data representing the portion of the detected electromagnetic radiation from each of the plurality of sensors. The processing unit is further operable to convert the received data into a signature representative of the electromagnetic radiation detected by the plurality of sensors.
Abstract:
The present invention relates to a method for monitoring the filling of a capsule with a medicament, to a corresponding filling method, to the associated apparatuses, and to a computer program for controlling the method and the apparatus. In the monitoring method, after at least part of the capsule has been filled with a predefined filling mass of a predefined closed contour of the medicament, at least the filling mass in the part of the capsule after the filling operation is recorded using digital imaging in a first step, the contour of the filling mass in the part of the capsule is determined from the digital imaging recording in a second step, and the contour is analysed in a third step in order to assess the filling operation in comparison with the predefined contour. The invention provides for external influences on the image properties to be compensated for by controlling the optical system.
Abstract:
Methods of volume measurement of a liquid are described. During extraction or feed of the liquid, at least two time points of the altered volume of the liquid is measured. Respective hydrostatic pressures are measured at these time points. The pressure difference is determined and the current volume of the liquid present in the container is determined.
Abstract:
A volume sensing system for use in determining a volume of a variable volume reservoir can include a lower plunger that can have a first end adapted to move with a bottom of the reservoir. An upper plunger can be slidable relative to the lower plunger. A lower biasing member can be positioned substantially between a base of the reservoir and the upper plunger, and the upper biasing member can be positioned between the upper plunger and an interference member. The upper biasing member can have a predetermined stiffness relative to the lower biasing member such that upon movement of the lower plunger, the upper plunger can move at a predetermined fraction of the amount of movement of the lower plunger, where the predetermined fraction can be determined at least in part by the predetermined stiffness of the upper biasing member relative to the lower biasing member.
Abstract:
The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.
Abstract:
An apparatus for metering the delivery of an aerosol. The apparatus has a variable acoustic source and a microphone, both acoustically coupled to a volume having a fluid region and an air region. The apparatus may also include a processor to determine a volume of the air region based on signals received from the microphone and the variable acoustic source. A fluid valve is coupled to the processor, and is configured to allow an amount of fluid to exit the fluid region associated with the volume of the air region. An atomizer, coupled to the fluid region, is configured to aerosolize at least a portion of the fluid.
Abstract:
Isolated non-naturally occurring populations of spermatozoa (15) having high purity and technologies to differentiate spermatozoa (28) based on characteristics such as mass, volume, orientation, or emitted light including methods of analysis and apparatus such as beam shaping optics (30) and detectors (32).
Abstract:
Filling level meter (4) for membrane gasometer (1), including at least one accumulation chamber (C1) arranged for containing a gas, and an impermeable flexible membrane (2) capable of moving between two positions corresponding to the chamber being totally full and totally empty, wherein the meter (4) includes: an instrument (12) associated with a fixed element (3, 9), arranged for generating a signal of measurement of a physical value that can be correlated to the quantity of gas contained in the chamber (C1); elements for processing and displaying (5) the value of the quantity of gas corresponding to the generated signal; a filiform, flexible element (6) for connecting the instrument (12) and the membrane (2); the filiform, flexible element (6) including at least one portion constituted by an elastic member (7).
Abstract:
The invention relates generally to a system and method for testing fuel evaporative systems, and more particularly to a stand-alone tank tester system (and method) for testing vehicle fuel tank integrity. Furthermore, a self-contained calibration tank with switchable leak sizes for calibrating the tank tester to multiple leak sizes is provided. Constant flow and vacuum methods for testing fuel tank integrity are also provided.
Abstract:
An acoustic capacity measurement method for finding capacity of a container or object by removing effect of the surface area without using an approximate expression of acoustic impedance is provided. The acoustic capacity measurement method for finding capacity of a container includes a pressure change ratio calculating step, a rotation step, an oblique coordinate transformation step, and a capacity calculating step.