Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
An optical measurement apparatus which includes at least one each of a light source, an optical element, a photodetector, and a sample container, and which measures a physical property of a biological sample in a solution retained by the sample container according to a plurality of kinds of measurement items, wherein a combination of the light source, the optical element, and the photodetector is selected or changed according to the measurement item, and a position where the photodetector is located is adjusted according to the selection or change based on intensity of light accepted by the photodetector.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. The system further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The light source is utilized to create a light beam that travels through at least a portion of the environmentally controlled chambers. The light beam may be a collimated light beam at locations where the light beam passes between at least two of the environmentally controlled chambers. A coupling mechanism may be provided that optically couples at least two the environmentally controlled chambers. Collimated light may be provided through the coupling mechanism. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
The present invention provides a spectral filter for an optical sensor. The spectral filter includes a substrate having a focus region and a defocus region, a panchromatic filter region disposed on the focus region of the substrate and a multi-spectral filter region disposed on the defocus region of the substrate. The panchromatic filter region includes a plurality of panchromatic pixels, while the multi-spectral filter region includes a plurality of multi-spectral pixels. Each of the multi-spectral pixels includes a plurality of color pixels.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
A detecting device for a spectrophotometer is provided which is capable of exhibiting a sufficient sensitivity and with an adequate linearity over the ultraviolet light, visible light and near-infrared light ranges. The spectrophotometer detecting device includes detectors of a photomultiplier-tube detector, an InGaAs detector and a PbS detector, and a switching device for switching among these detectors. Alternatively, the spectrophotometer may include a single integrating sphere including these three types of detectors placed thereon. The spectrophotometer may further include output conversion means for correcting the output linearity difference among these detectors.
Abstract:
A wavelength division multiplexed device is based on a transmission grating spectrometer having at least two diffractive optical elements. The WDM device provides flexible use and may be widely applied in WDM systems. The device is useful for multiplexing and demultiplexing, channel monitoring, for adding and dropping channels, and for controlling the power in individual channels within a multiple channel signal. The device provides for dynamic control of individual channels, and may be advantageous in use as a gain flattening filter.
Abstract:
Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum. Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
Abstract:
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.