Abstract:
A novel and useful degauss circuit for use with electromagnetic door locks. The door lock circuit is configured to provide a constant current to the electromagnetic coil load. A pulse width modulation (PWM) controller varies the frequency and/or duty cycle to a switch in series with the coil. Coil current feedback is used to adjust the PWM frequency and/or duty cycle so as to maintain the current through the coil at a certain level to maintain a desired holding force on the door lock. A degauss circuit inline with the current flowing through the coil is provided. When triggered either in an uncontrolled or controlled manner, a series RLC circuit that includes the coil inductance and resistance causes ringing to occur whereby the coil current reverses direction with sufficient amplitude and duration to degauss the coil.
Abstract:
Systems and methods for magnetic shielding are described. A magnetic shield formed of a material having a high magnetic permeability may be degaussed using a toroidal degaussing coil. The toroidal degaussing coil may enclose at least a portion of the shield. Magnetic field gradients may be actively compensated using multiple magnetic field sensors and local compensation coils. Trapped fluxons may be removed by an application of Lorentz force wherein an electrical current is passed through a superconducting plane.
Abstract:
Recycled Nd—Fe—B sintered magnets. One of the recycled Nd—Fe—B sintered magnets includes a composition of WaRbAc, where waste material W comprises material from a waste Nd—Fe—B sintered magnet, rare earth material R comprises at least one of: Nd or Pr, and elemental additives A comprises at least one of: Nd, Pr, Dy, Co, Cu, or Fe, and indices a, b, and c indicate atomic percentages of the corresponding compositions or elements and the atomic percentages of the rare earth material R and the elemental additives A have values satisfying Nd[0.1-19 at. %*s(Nd), x]Pr[0.1-19 at. %*s(Pr), y]Dy[0.1-19 at. %*s(Dy), z]Co[0 at. %, d]Cu[0 at. %, e]Fe[0 at. %, f] where [m,n] means a range from minimum m and maximum n, s(t) is the atomic percent of element t in starting composition, x=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), y=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), z=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), d=3 at. %-[81,99.9] at. %*s(Co), e=0.3 at. %-[81,99.9] at. %*s(Cu), and f=77 at. %-[81,99.9] at. %*(s(Fe)+s(Co)).
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance. One of the methods includes demagnetizing magnetic material from a waste magnet assembly by cyclic heating and cooling of the magnetic material, fragmenting adhesives attached to the magnetic material, cracking coating layers of the magnetic material, and subjecting the magnetic material to at least one of: a) a mechanical treatment or b) a chemical treatment, to remove the coating layers and prepare the magnetic material without impurities, fragmenting the demagnetized magnetic material to form a powder, and mixing the powder with a rare earth material R and an elemental additive A to produce a homogeneous powder, wherein the rare earth material R comprises at least one of: Nd or Pr, and the elemental additive A comprises at least one of: Nd, Pr, Dy, Co, Cu, and Fe.
Abstract:
A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.
Abstract:
An integrated circuit for demagnetizing an inductive load includes a first switch to control current supplied by a voltage supply to the inductive load. A Zener diode includes an anode connected to a control terminal of the first switch and a cathode connected to the voltage supply. A second switch includes a control terminal and first and second terminals. A temperature sensing circuit is configured to sense a temperature of the first switch and to generate a sensed temperature. A comparing circuit includes inputs that receive a reference temperature and the sensed temperature and an output connected to the control terminal of the second switch.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance. One of the methods includes demagnetizing magnetic material from a waste magnet assembly by cyclic heating and cooling of the magnetic material, fragmenting adhesives attached to the magnetic material, cracking coating layers of the magnetic material, and subjecting the magnetic material to at least one of: a) a mechanical treatment or b) a chemical treatment, to remove the coating layers and prepare the magnetic material without impurities, fragmenting the demagnetized magnetic material to form a powder, and mixing the powder with a rare earth material R and an elemental additive A to produce a homogeneous powder, wherein the rare earth material R comprises at least one of: Nd or Pr, and the elemental additive A comprises at least one of: Nd, Pr, Dy, Co, Cu, and Fe.
Abstract:
Recycled Nd—Fe—B sintered magnets. One of the recycled Nd—Fe—B sintered magnets includes a composition of WaRbAc, where waste material W comprises material from a waste Nd—Fe—B sintered magnet, rare earth material R comprises at least one of: Nd or Pr, and elemental additives A comprises at least one of: Nd, Pr, Dy, Co, Cu, or Fe, and indices a, b, and c indicate atomic percentages of the corresponding compositions or elements and have values satisfying Nd[0.1-19 at. %*s(Nd), x]Pr[0.1-19 at. %*s(Pr),y]Dy[0.1-19%*s(Dy),z]Co[0,d]Cu[0,e]Fe[0,f] where [m, n] means a range from minimum m and maximum n, s(t) is the atomic percent of element t in starting composition; f(t) is the atomic percent of element t in final composition, x=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), y=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), z=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), d=3−[81, 99.9] at. %*s(Co), e=0.3−[81, 99.9] at. %*s(Cu), and f=77−[81, 99.9] at. %*(s(Fe)+s(Co)).
Abstract:
Systems and methods for magnetic shielding are described. A magnetic shield formed of a material having a high magnetic permeability may be degaussed using a toroidal degaussing coil. The toroidal degaussing coil may enclose at least a portion of the shield. Magnetic field gradients may be actively compensated using multiple magnetic field sensors and local compensation coils. Trapped fluxons may be removed by an application of Lorentz force wherein an electrical current is passed through a superconducting plane.
Abstract:
Residual magnetic locks, brakes, rotation inhibitors, clutches, actuators, and latches. The residual magnetic devices can include a core housing and an armature. The residual magnetic devices can include a coil that receives a magnetization current to create an irreversible residual magnetic force between the core housing and the armature.