Abstract:
A laser beam generation apparatus includes a solid state laser medium having first and second optically polished planes provided opposed with each other to allow a laser beam to be pumped to pass out of one of the first and second optically polished planes. At least one third optical polished plane which is different from the first and second optically polished planes is also provided. A pumping beam source emits a pumping light beam to pump the laser medium and impinges the pumping light source to be incident on the at least one third optically polished plane. Further, the pumping laser beam is provided at an incident angle substantially equal to the Brewster angle.
Abstract:
An optical amplifier which includes an elongated slab of solid state lasing material, such as a rare earth doped yttrium-aluminum-garnet (YAG). In order to provide a relatively increased absorption length and thus a higher overall efficiency, the optical amplifier in accordance with the present invention incorporates end pumping in which the pumped light is coaligned with the amplified light resulting in relatively longer absorption lengths and higher overall efficiencies. The coaligned pumped sources are directed to lateral faces of the slab which include windows, formed from an insulating coating such as an anti-reflection coating, at the pump wavelength. In order to cause internal reflection of the pump beam along the lasing axis, the end faces are formed at about a 45° angle relative to the longitudinal axis which causes the pumped light to be reflected within the slab co-axially a with a amplified light. In order to confine the absorption of the pumped light to the center portion of the slab, the opposing end portions of the slab may be undoped while the center portion of the slab along the longitudinal axis is doped. Such a configuration provides relatively low residual thermal lensing with virtually no birefringence.
Abstract:
An optical device includes a light transmitting non-linear optical material having a first face and a second face. The first and second faces oppose each other. The first face has a plurality of first reflecting portions provided thereon, and the second face has a plurality of second reflecting portions provided thereon. Each of the second reflecting portions corresponds to one of the first reflecting portions. Furthermore, the first and second faces are substantially flat except for at least one convex arcuate portion being formed on at least one of the first and second faces. Additionally, at least one of the first and second reflecting portions is obtained by coating a reflective material on the convex arcuate portion.
Abstract:
An optical amplifier which includes an elongated slab of solid state lasing material, such as a rare earth doped yttrium-aluminum-garnet (YAG). In order to provide a relatively increased absorption length and thus a higher overall efficiency, the optical amplifier in accordance with the present invention incorporates end pumping in which the pumped light is coaligned with the amplified light resulting in relatively longer absorption lengths and higher overall efficiencies. The coaligned pumped sources are directed to lateral faces of the slab which include windows, formed from an insulating coating such as an anti-reflection coating, at the pump wavelength. In order to cause internal reflection of the pump beam along the lasing axis, the end faces are formed at about a 45.degree. angle relative to the longitudinal axis which causes the pumped light to be reflected within the slab co-axially with a amplified light. In order to confine the absorption of the pumped light to the center portion of the slab, the opposing end portions of the slab may be undoped while the center portion of the slab along the longitudinal axis is doped. Such a configuration provides relatively low residual thermal lensing with virtually no birefringence.
Abstract:
A compact diode pumped laser including a nonuniform, single-or double-sided diode pumped laser head and a polarization output coupled (POC) resonator. The POC resonator employs reflections from two opposing uncrossed roof prism mirrors to produce a uniform near field and far field beam with diffraction or near diffraction limited quality. The single laser head particularly includes a laser rod, a sapphire envelope located about the rod, an area of antireflection coating located on the sapphire envelope between the rod and the diode array, and a high reflectivity nickel-plated indium layer located on the sapphire envelope on the surface thereof outside of the area of antireflection coating.
Abstract:
A solid-state laser architecture producing a beam of extremely high quality and brightness, including a master oscillator operating in conjunction with a zig-zag amplifier, an image relaying telescope and a phase conjugation cell. One embodiment of the laser architecture compensates for birefringence that is thermally induced in the amplifier, but injects linearly polarized light into the phase conjugation cell. Another embodiment injects circularly polarized light into the phase conjugation cell and includes optical components that eliminate birefringence effects arising in a first pass through the amplifier. Optional features permit the use of a frequency doubler assembly to provide output at twice optical frequencies, and an electro-optical switch or Faraday rotator to effect polarization angle rotation if the amplifier material can only be operated at one polarization. The zig-zag amplifier is cooled by flow of cooling liquid, preferably using longitudinal flow to minimize temperature gradients in a vertical direction, and has cooling channel seals disposed in dead zones that receive no light, to minimize optical damage to the seals. Light is input to the amplifier at a near normal angle of incidence, to minimize polarization by reflection and to permit a polarizer to be used to extract an output beam from the amplifier. Antireflective coatings on edges and on sides of the amplifier eliminate parasitic oscillations, and wedge-shaped windows provide uniform pumping by eliminating gaps between diode arrays.
Abstract:
An efficient, fundamental transverse mode selected, diode pumped, solid state laser is disclosed. The laser consists of a slab of laser gain material such as Nd:YLF. Cavity forming optics are positioned around the slab of laser gain material. A laser diode bar, collimated by a micro-lens is used for side pumping a constrained gain region in the slab of laser gain material, with the dimensions transverse to the direction of beam propagation of the constrained gain region being smaller in at least one axis than the transverse dimensions of the fundamental transverse mode volume in the laser gain material. The cavity forming optics and the side pumping of the constrained gain region act in conjunction such that the fundamental transverse mode is automatically selected in the solid state laser.
Abstract:
The use of rectangular cross-section gain material with two or more cylindrical lenses placed in close proximity or attached to opposite sides of the gain material allows for an efficient pumping of the gain material in an optical gain component. The optical gain component can be used in a laser device. Laser diode bars are arranged so as to pump the gain material through the lenses. A cooling apparatus can cool a rectangular cross-section gain material through two opposite flat sides so that no thermal birefringence is created. An optical gain component with two gain materials can orient these two gain materials such that the small-signal gain is almost circular and gaussian in profile with a large center peak tapering off to a much lower gain at the edges.
Abstract:
A high-output, single fundamental transverse mode solid state laser is disclosed which uses a semiconductor laser array as an excitation light source. The solid state laser comprises: a laser element which includes a core containing an element added as a laser medium, a cladding containing no such laser medium element, and reflecting mirrors coated over the cladding surface for repeatedly reflecting incident excitation light so that it may repeatedly pass through the core; an excitation light source formed by semi-conductor laser or light emitting diode array; means for guiding the excitation light from the excitation light source to one side of the laser element for incidence thereto; and a resonator for the oscillation of the solid state laser.
Abstract:
A compact, powerful, single slab laser oscillator-amplifier system immersed in a high pressure gas which acts as a Raman shifting medium to shift the oscillator output wavelengths from the 1060-3000 nm range to the 1100-14000 nm range. The Raman shifting gas is conained within the casing (29) which also encloses a laser oscillator defined along the long axis of the slab laser medium (1) between dielectric mirror (2) and partially reflecting mirror (3). An electro-optic switch (7) is provided and slab (1) is pumped via a pump light source (22) while being cooled by Peltier stack (26). The slab also includes dielectric mirror (12) and anti-reflection coating (13) which act in conjunction with the slab laser medium (1) and the mirrored substrate (10) to form the amplifier portion of the system. Light passed from the oscillator through prism (4) is reflected by bevelled portion (9) of mirror (10) and directed to slab (1) where it is amplified and reflected by mirror (12). During successive reflections between slab (1) and mirror (10) a Raman shifted beam is generated and is emitted via collimator (19).