Abstract:
A composition is described herein which contains aluminosilicate materials characterized in their ability to exchange sodium ions for calcium and magnesium ions. The composition also contains, in an intimate mixture with the aluminosilicate, an inorganic salt and a water-soluble or water-dispersable organic agglomerating compound having a melting point between 30.degree. C and 100.degree. C. The particulate composition described above is suitable for water softening per se or for admixture into detergent compositions.
Abstract:
Shaped articles and methods for forming shaped articles are provided. In one embodiment, a method for forming a shaped article includes providing a hydroxy metal oxide binder precursor in a solution of hydroxy metal oxide binder precursor. The method mixes a primary ion exchange composition with the solution of hydroxy metal oxide binder precursor. Further, the method mixes a solid with the solution of hydroxy metal oxide binder precursor. The method includes converting the hydroxy metal oxide binder precursor to a hydroxy metal oxide binder. Also, the method includes forming the shaped article from the primary ion exchange composition, the hydroxy metal oxide binder, and the solid.
Abstract:
An ion exchange system includes one or more strategies to reduce the amount of hydrogen gas inside an ion exchange column when the column is offline or disposed of. The ion exchange system comprises an ion exchange column including a housing and ion exchange media positioned in the housing. The ion exchange column can include one or more of the following: (1) an oxide material that limits the production of hydrogen gas from radiolysis, (2) a hydrogen scavenging material that removes or scavenges hydrogen gas inside the column, and (3) a hydrogen catalytic material that catalyzes the reaction of hydrogen and oxygen inside the column.
Abstract:
High resolution protein A chromatography employing a chaotropic agent and pH gradient or pH step elution buffer results in improved peak resolution between closely related molecular species. Bispecific antibodies containing a protein A-binding-ablating substitution CH3 domain paired with a protein A-binding CH3 domain are separated with high peak resolution from monospecific antibodies containing a protein A-binding-ablating substituted CH3 domain paired with the protein A-binding-ablating substituted CH3 domain and monospecific antibodies containing a protein A-binding CH3 domain paired with the protein A-binding CH3 domain. Useful chaotropic agents include magnesium chloride and calcium chloride.
Abstract:
A radioactive material adsorbent having large adsorption capacity is provided. The radioactive material adsorbent contains a titanate represented by a chemical formula M2Ti2O5 (M: univalent cation). The M2Ti2O5 has a large cation exchange capacity, exhibits thermal stability, exhibits excellent chemical resistance to acids, alkalis, and the like and, therefore is suitable for an adsorbent for a water treatment. The mechanical strength is improved by adding a binder to this titanate and performing forming and firing, so that pulverization due to vibration, impact, and the like applied during transportation and the like, and falling off of primary particles at the time of putting into water can be reduced.
Abstract:
The present invention is generally directed to a versatile fluid treatment system which includes: a mobile device; a track system connected to the mobile device; one or more treatment vessels removably attached to the track system, each treatment vessel comprising a treatment material disposed inside the treatment vessel, at least one fluid inlet, and at least one fluid outlet; an input conduit that receives a fluid to be treated, the input conduit in fluid communication with the fluid inlet on the treatment vessel; and an output conduit in fluid communication with the fluid outlet on the treatment vessel, the output conduit receives treated fluid from the treatment vessels via the fluid outlet.
Abstract:
The present invention relates to a method for removal of metal ions from an aqueous solution, which comprises contacting the aqueous solution with a phosphazene-formaldehyde resin as well as an ion exchange resin comprising a phosphazene-formaldehyde resin.