Abstract:
A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and product amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition, to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.
Abstract:
Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.
Abstract:
A liquid metal ion source according to the present invention has a needle electrode disposed at a position spaced from a reservoir for holding a source material, and is provided with means for freely varying a distance from the reservoir to the fore end of the needle electrode.
Abstract:
Method and device for furnishing an ion stream by causing gas to flow through a discharge aperture having a diameter of at most 20 .mu.m into an evacuated chamber and ionizing said gas by means of one or a plurality of focused electron beams downstream of said aperture in which the ionization is effected immediately downstream of said discharge aperture.
Abstract:
An ion source comprises a cylindrical chamber having a longitudinal exit slit formed therein and two parallel anode wires extending the length of the chamber in the central region thereof and symmetrically disposed with respect to the longitudinal axis of the chamber and the exit slit, wherein at each end of the exit slit there is positioned at or near the zero potential equipotential a mask, the separation of the inner ends of the masks defining the width of the ion beam emitted by the source.
Abstract:
A chemical ionization ion source comprising a firt electrode disposed in a discharge region, a counter electrode disposed to confront the first electrode and having at least one space for introducing electrons generated in the discharge region into an ionization region and means for maintaining the counter electrode at a potential higher than that of the first electrode and applying a direct current voltage between the two electrodes, wherein the discharge region and the ionization region are maintained under substantially the same pressures.
Abstract:
Ion sources which become coated with insulative materials are rejuvenated by forming the repeller electrode in the ion source of gold and bombarding such repeller electrode with ions to sputter the gold onto the coated surfaces to render them conductive again. Gold sputtering is accomplished by bombarding the gold repeller electrode with inert argon ions.To perform this method, the slit of the extractor plate on the ion source is greatly reduced in cross-sectional area such that the normally higher sputtering pressures may be maintained within the ion source itself. If a direct sample probe is used, it too may be formed of gold and used to provide the gold sputtering source.
Abstract:
An ion source comprising an electrode consisting of at least one body made of a material such as to be perfectly wetted by a liquid material ions of which are to be emitted by the source and not corrodible by that material, and having a termination the radius of curvature of which is such that a jet of the liquid material will form and be anchored to the termination of the electrode under the influence of an electric field, means for applying the ionizing electric field and a reservoir for the material ions of which are to be emitted by the source.
Abstract:
The ion source according to the invention comprises a hollow cathode discharge arrangement 10 in which a plasma is produced by the ionization of a gas under the effect of a positive d.c. voltage applied to an anode 3 in relation to two cathodes 1 and 20. One of these cathodes 20 is formed with holes 30 through which some of the ions of the plasma escape. A filament 7 emits slow electrons towards this cathode, neutralizing the space charge created ahead of this cathode by the ions having left the arrangement and enables them to be propagated towards a point of use 40 situated at a considerable distance. A grid 8 limits the number of these electrons entering the arrangement 10. The source provides ion beams of clearly defined energy and high density.
Abstract:
A method and apparatus for producing ions wherein an ion generator produces periodic pulses of electric energy of a single polarity for some applications and alternating positive and negative polarities for other applications. A plurality of the electric pulses are limited in amplitude by a substantially sinusoidal half-wave envelope and the positive and negative pulses are preferably of different amplitudes. The ground electrode is arranged about and upstream and downstream of the ionizing electrode to provide a highly effective electric field substantially normal to the gas flow. A heater heats the gas to increase ionization. An ultrasonic sound wave generator pulses the gas with sound waves prior to, during or after ionization of the gas to group the ions of a like charge in distinct pressure wave fronts or distinct areas so as to reduce recombination of ions thereby making more ions available per volume and also increasing the total energy of the ions produced. Multiple sound wave generators increase the energy of the base frequency or selected harmonics. An inlet passage to the generator of a selected length increases the energy. A discharge passage of a selected length reinforces and/or eliminates selected harmonics. A discharge nozzle with angularly inclined and outwardly enlarged venturis cool the heated ionized gas.