摘要:
Provided is a filling mining method for a fully-mechanized top coal caving working face, which relates to the field of mining engineering technologies. The method solves the technical problems of roof control of the fully-mechanized top coal caving working face and a large ground deformation of top coal caving mining. The method includes the following steps: at step A, dividing the fully-mechanized top coal caving working face into a filling zone and a top coal caving zone along a strike of the working face, or dividing the working face into a filling zone and a top coal caving zone along a strike and an inclination of the working face; at step B, determining a cycle interval of the working face; at step C, performing supporting for the filling zone before the working face, and completing coal caving in the top coal caving zone and performing round wood supporting in the filling zone; at step D, after the filling zone reaches the filling interval, disposing a filling tarpaulin behind a hydraulic support and pumping the filling paste; at step E, repeating steps C and D to complete mining. A mining method of alternate coal caving and filling is provided to complete the filling mining of the top coal caving working face. In this way, the roof is effectively controlled, ground subsidence is reduced and advantages such as safety and high efficiency are available.
摘要:
A system and a method are provided for drilling pathways to mine for solid natural resources from an elevated terrain. The system includes a drill bit, at least one reamer, and a diverter. The drill bit allows for drilling into a seam of natural resource that is found within a mountain. The at least one reamer enlarges a transversal access hole that is drilled to access the seam of natural resource. The diverter separates cuttings from any waste material as the cuttings are excavated from the seam of natural resource. There are two methods that can be used to mine for solid natural resources from an elevated terrain. The typical auger method drills transversal access holes directly into the seam of natural resource. The directional engineering auger method drills the transversal access hole from a diagonal wellbore into the seam of natural resource.
摘要:
A method of recovering a room-and-pillar coal pillar by using external replacement supports. In the recovery of a room-and-pillar coal pillar, a cement material wall is formed by performing pouring around a coal pillar having a width to height ratio of less than 0.6, by means of a single-pillar sack arrangement technique, such that a coal pillar resource may be mined while a wall made from a cement filling material supports an overlying stratum. After mining is complete, a coal pillar goaf region is filled with the cement filling material, and after the cement filling material solidifies and is stable, the single pillar can be recovered.
摘要:
A mine field layout method suitable for fluidized mining of coal resources is provided. A main shaft and an air shaft are provided in the mine field, the bottom of the main shaft is located in the shallow horizontal coal seam zone, and the bottom of the air shaft is located in the deep horizontal coal seam zone. The horizontal main roadways are arranged at two boundaries along the strike of the coal seam, and inclined main roadways are arranged at two boundaries along the dip direction of the coal seam. Connecting roadways are located inside the mine field and are in communication with the horizontal main roadways. In the coal mining stage, the coal resources can be converted into the fluidized energy product and/or electricity by an unmanned automatic mining machine.
摘要:
A mine field layout method suitable for fluidized mining of coal resources is provided. A main shaft and an air shaft are provided in the mine field, the bottom of the main shaft is located in the shallow horizontal coal seam zone, and the bottom of the air shaft is located in the deep horizontal coal seam zone. The horizontal main roadways are arranged at two boundaries along the strike of the coal seam, and inclined main roadways are arranged at two boundaries along the dip direction of the coal seam. Connecting roadways are located inside the mine field and are in communication with the horizontal main roadways. In the coal mining stage, the coal resources can be converted into the fluidized energy product and/or electricity by an unmanned automatic mining machine.
摘要:
The present invention relates to the field of prevention of a water disaster in coal mining, and discloses a risk evaluation method of an overburden bed-separation water disaster in a mining area. In the prior art, prevention of the bed-separation water disaster is achieved mainly by making bed-separation water “cut-off holes” and “diversion holes” underground; however, the degree of a roof bed-separation water disaster in the mining area has not yet been qualitatively or quantitatively evaluated and analyzed, resulting in blindness of the prevention of the bed-separation water disaster. In order to solve this problem, the present invention provides a risk evaluation method of an overburden bed-separation water disaster in a mining area, which includes the following steps: S1. collecting geological information about strata in the mining area; S2. calculating the height of a water-conducting fissure zone in the mining area; S3. based on a composite beam principle, determining a bed separation development position in strata above the water-conducting fissure zone; and S4. calculating a bed-separation water inrush coefficient, and zoning the mining area based on a risk of an overburden bed-separation water disaster. The present invention can predict and evaluate a risk of an overburden bed-separation water disaster in the mining area in advance, thus providing a scientific basis for designing a scheme to prevent the bed-separation water disaster, and guaranteeing coal mining safety.
摘要:
A fractured roof 110 mining method entry-side anti-collapsed structure, one working face of the 110 mining method corresponds to one roadway but without retaining any coal pillar, the roadway retains an entry after the previous working face implements mining top-cutting pressure release, and a roof of the roadway is arch-shape, directional cutting is conducted on one side of the roadway, and the cutting angle is between 15-20 degrees. One working face corresponds to one roadway but without retaining any coal pillar when underground mining is conducted, which can save resources and improve recovery rate of mining. And, the roof of the roadway of the retained entry is arch-shaped, which can improve safety and ensure safety of the coal mining working face. In addition, a cutting angle is 15-20 degrees, which can effectively determine a roof caving direction after top-cutting and reduce affect to the retained entry.
摘要:
An armored face conveyor includes a plurality of line pans positioned adjacent to one another, a plurality of flight bars, and a connecting member. Each line pan includes a race having an outer race face and an inner race face. The plurality of flight bars extend laterally across the line pans and are received by the race. Each flight bar includes an end having an upper guide surface and a lower guide surface. The connecting member extends through the plurality of flight-bars and couples the flight-bars to one another. Lateral movement of any one of the flight-bars that causes the upper guide surface to contact the outer race face substantially simultaneously causes the lower guide surface to contact the inner race face.
摘要:
Methods and equipment have been developed that combine the use of continuous miners, flexible conveyor trains, and longwall mining techniques to provide flexible and efficient removal of resources from subterranean formations. Some systems include: a main gate; and a tailgate connected to the maingate by an active mine face; wherein the active mine face extends at an angle between 95° and 135° relative to the maingate.
摘要:
A method of mineral fuel beneficiation with subsequent delivery to the consumer by pipeline transportation relates fuel and energy complex and can find application in coal and slate energetics. Invention main objective is security of solid fuel delivery from mine (or an open cut coal mine) in already enriched form, with its subsequent through delivery to the consumer by pipeline on any distances in stream mode, without any intermediate transshipment operations. For this purpose use liquid with set complex physical, sanitary-and-hygienic and ecological properties, simultaneously, in 4 qualities: As environment for grinding material that needed further reduction of size; As separation environment for the subsequent, after reduction of size, deep underground gravitational enrichment of combustible mineral, As motionless filler of the vertical pipeline, for buoyancy in it ready product from mine on terrestrial surface: As carrying medium for final drift of end-product to the consumer by main pipeline. Depending on consumer type of solid fuel, a time of year, and weather conditions in which such, non-polluting, mining-energetic complex functions, there are used various technological approaches as to the general principles of construction of such, non-polluting, beneficiating transport technological process as well as within the limits of separate links of such technological chain, various methods of the regeneration, used many functional liquids which are in the closed contour of circulation between producer of solid fuel and its consumer.