摘要:
An integrated sensor-array processor and method includes sensor array time-domain input ports to receive sensor signals from time-domain sensors. A sensor transform engine (STE) creates sensor transform data from the sensor signals and applies sensor calibration adjustments. Transducer time-domain input ports receive time-domain transducer signals, and a transducer output transform engine (TTE) generates transducer output transform data from the transducer signals. A spatial filter engine (SFE) applies suppression coefficients to the sensor transform data, to suppress target signals received from noise locations and/or amplification locations. A blocking filter engine (BFE) applies subtraction coefficients to the sensor transform data, to subtract the target signals from the sensor transform data. A noise reduction filter engine (NRE) subtracts noise signals from the BFE output. An inverse transform engine (ITE) generates time-domain data from the NRE output.
摘要:
An object sound period detection apparatus includes a first calculating unit, a second calculating unit, a first detecting unit, and a second detecting unit. The first calculating unit calculates a first threshold every unit time. The second calculating unit calculates a second threshold every unit time. The first detecting unit compares first feature amount based on the input signal with the first threshold and detects the object sound period in the input signal. The second detecting unit compares second feature amount based on the input signal with the second threshold, detects the object sound period in the input signal, and outputs a detecting result. The first calculating unit calculates the first threshold based on a detecting result before unit time by the second detecting unit. The second calculating unit calculates the second threshold based on a detecting result in same unit time by the first detecting unit.
摘要:
Embodiments of the invention may be used to implement a rate converter that includes: 6 channels in forward (audio) path, each channel having a 24-bit signal path per channel, an End-to-end SNR of 110 dB, all within the 20 Hz to 20 KHz bandwidth. Embodiment may also be used to implement a rate converter having: 2 channels in a reverse path, such as for voice signals, 16-bit signal path per channel, an End-to-end SNR of 93 dB, all within 20 Hz to 20 KHz bandwidth. The rate converter may include sample rates such as 8, 11.025, 12, 16, 22.05, 24, 32 44.1, 48, and 96 KHz. Further, rate converters according to embodiments may include a gated clock in low-power mode to conserve power.
摘要:
An audio processing apparatus includes an acquisition unit configured to acquire an audio signal, and an audio processing unit configured to reduce noise contained in the audio signal, wherein the audio processing unit complements an audio signal in a section containing noise of the audio signal with a signal generated based on an audio signal in a predetermined section before the section containing noise and an audio signal in a predetermined section after the section containing noise, and wherein, in a case where noise is contained in one of the audio signal in the predetermined section before the section containing noise and the audio signal in the predetermined section after the section containing noise, the audio processing unit complements the audio signal in the section containing noise with a signal generated based on the audio signal in a noise-free section.
摘要:
A voice information control method for a terminal used in a system including a server device which creates text data on the basis of the voice information received from the terminal device, the method including: acquiring plurality items of first voice information; specifying a time interval that includes second voice information which is one of the plurality items of the first voice information, and which includes spoken voice of a first speaker who uses the first terminal device; and transmitting the second voice information included in the specified time interval being transmitted to the server device.
摘要:
There is provided a noise suppressing device, for suppressing a noise component contained in a sound, including: at least two sound receiving parts receiving sounds from a plurality of directions containing a sound from a direction of a given sound source and converting the sounds to digital sound signals in a time domain, respectively; an estimating part acquiring both direction information on a direction of the given sound source and distance information on a distance from the given sound source based upon the digital sound signals converted by the sound receiving parts, and estimating a component value of a noise component contained in the signal by use of the direction information and the distance information; and a controlling part acquiring a control value of a suppression amount for controlling a range of a direction of the digital sound signals.
摘要:
An RMS detector uses the concept of the k-NN (classifying using nearest neighbors)—algorithm in order to obtain RMS values. A rms detector using first-order regressor with a variable smoothing factor is modified to penalize samples from center of data in order to obtain RMS values. Samples which vary greatly from the background noise levels, such as speech, scratch, wind and other noise spikes, are dampened in the RMS calculation. When background noise changes, the system will track the changes in background noise and include the changes in the calculation of the corrected RMS value. A minimum tracker runs more often (e.g. two or three times) than the rate as in prior art detectors and methods, tracks the minimum rms value, which is to compute a normalized distance value, which in turn is used to normalize the smoothing factor. From this data, a corrected or revised RMS value is determined as the function of the previous RMS value multiplied by one minus the smoothing factor plus the smooth factor times the minimum rms value to output the corrected RMS for the present invention. The rms value is used to generate a reset signal for the minimum tracker and is used to avoid deadlock in the tracker, for example, when the background signal increases/decreases over time.
摘要:
A voice or audio signal processor for processing received network packets received over a communication network to provide an output signal, the voice or audio signal processor comprising a jitter buffer being configured to buffer the received network packets, a voice or audio decoder being configured to decode the received network packets as buffered by the jitter buffer to obtain a decoded voice or audio signal, a controllable time scaler being configured to amend a length of the decoded voice or audio signal to obtain a time scaled voice or audio signal as the output voice or audio signal, and an adaptation control means being configured to control an operation of the time scaler in dependency on a processing complexity measure.
摘要:
Disclosed is an operation device that executes a noise removal process of removing noise from a collected audio signal collected by a microphone. In an acting state where noise generation possibly occurs, the operation device transmits noise generation information indicating that the operation device is in the acting state where noise generation possibly occurs, and changes the details of the noise removal process, according to the noise generation information.
摘要:
Methods and systems are provided for detecting artifacts in an electronic signal. In an embodiment, a method is provided comprising: connecting a first input of an electronic device to a first signal line of a signal processing device, such as an amplification device; connecting a second input of the electronic device to a second signal line of the signal processing device, the second signal line being downstream from the first signal line; establishing, based on an observed behavior of a first signal on the first signal line, an expected behavior of a second signal on the second signal line; and determining whether a difference exists between the expected behavior of the second signal and an observed behavior of the second signal. If a difference is detected, the expected behavior of a second signal and the observed behavior of the second signal may be recorded for later analysis.