Abstract:
Various embodiments of a lip moving device for use in robots are provided. A lip moving device has first and second lip members. The first and second lip members are made from a flexible material. First and second driving parts apply torques to both ends of the first lip member, while third and fourth driving parts apply torques to both ends of the second lip member. The first and third driving parts are mounted in a first frame. The second and fourth driving parts are mounted in a second frame. The first and second frames are pivotally coupled to a supporting part. An adjusting part pivots the first and second frames relative to the supporting part to adjust a distance between the first and second frames.
Abstract:
A photostimulation apparatus may include: a membrane for insertion into a living body; and at least one cell disposed on the membrane. Each cell may include a first light source for irradiating light to a photosensitive material in the living body. Further, a photostimulation apparatus may include: a membrane for insertion into a living body; and at least one first light source disposed on the membrane for irradiating light to a photosensitive material in the living body. Since the photostimulation apparatus is placed on the surface of cortex or dura, it may minimize damage of the brain tissue and may activate and/or inhibit a large area simultaneously using light.
Abstract:
A system for registering instances based on history is disclosed. An instance registration setting unit reads ontologies and storing them in memory, and provides an interface capable of editing one or more instances included in each of classes. The instances are provided through an ontology viewer for visualizing relationships between the stored ontologies. An instance registration editing unit edits, searches for, and registers the instances using the interface provided by the instance registration setting unit, and supports the editing by extracting one or more object names based on external information while managing the edited instances based on the history.
Abstract:
The present invention provides a method for depositing self-aligned carbon nanomaterials (carbon nanoflake, carbon nanotube, carbon nanorod and carbon nanosphere), by inducing a gas chemistry for the carbon nanomaterials, on a substrate having a large area of several inches in diameter, under the conventional CVD diamond deposition conditions. The well-aligned carbon nanomaterials on the large area are applicable for sensitive base materials in the fields including biochemistry and electrochemistry.
Abstract:
The present invention relates to an amorphous alloy and a method for manufacturing thereof. The amorphous alloy according to the present invention includes has a chemical formula of Feioo-a-b-c-d-e-f-gCraMobCcBaYeMflg. Here, the M is at least one selected from a group consisting of Al, Co, N1 and Ni, and the I is at least one selected from a group consisting of Mn, P, S, and O as impurities. The a, b, c, d, e, f, and g are satisfied with the compositions of 16.0 wt %≦a
Abstract:
There is provided a hybrid stepping motor comprising the following: a first rotor yoke and a second rotor yoke, each of the rotor yokes having a plurality of rotor teeth on a periphery thereof; a rotating shaft located between the first and second rotor yokes and supporting the first and second rotor yokes on a same axis, the rotating shaft including at least one permanent magnet magnetized in a direction of the axis; and a plurality of stator yokes, each of the stator yokes having a core portion, a coil wound around the core portion, and a plurality of stator teeth extending parallel to the axis from opposed end portions of the core portion, the stator yokes being disposed at regular intervals around the rotating shaft so that a constant air gap is maintained between radially inward surfaces of the stator teeth and radial end surfaces of the rotor teeth. A positive current is applied to the opposed and paired coils of said coils and a negative current is applied to the rest coils of said coils. The positive current and the negative current are applied at the same time and magnitude.
Abstract:
Provided is a surface plasmon resonance sensor including: a part of delivering light by which a signal beam is incident to generate an evanescent field; and a part of exciting surface plasmon for exciting surface plasmons by the generated evanescent field and giving rise to a surface plasmon resonance, wherein a dielectric waveguide layer is inserted between metal layers of the part of exciting surface plasmon, and surface plasmon resonance properties are changed by an object to be analyzed.
Abstract:
The present invention relates to a novel use of an α1G T-type calcium channel transgenic mouse as a nervous disease model, more particularly, a novel use of a mouse deficient in α1G T-type calcium channel showing novelty-seeking and alcohol preference as a nervous disease model for human nervous related diseases such as novelty-seeking character, alcoholism, anxiety and emotion disorder by stress, etc. The α1G T-type channel transgenic mice showing novelty-seeking and alcohol preference of the present invention can be effectively used for the development of a medicine and a therapeutic method for human nervous diseases.
Abstract:
The present invention relates to a highly resilient (lactide/glycolide)/ε-caprolactone copolymer with good shape recovery force, flexibility, and biodegradability and a use of such copolymer for the repair of articular cartilage defects. The highly resilient (lactide/glycolide)/ε-caprolactone copolymer of the present invention is capable of rapidly and efficiently inducing cartilage regeneration, can be easily deformed and almost completely restored to its original form after deformation. Further, the highly resilient copolymer of the present invention can be safely and conveniently transplanted to a patient by using an arthroscope without causing economic, physical, and mental burden. Thus, the highly resilient copolymer of the present invention can be effectively used as a polymer scaffold for the repair of cartilage defects.
Abstract:
The present invention relates to a cell aggregate-hydrogel-polymer scaffold complex useful for cartilage regeneration which has a structure in which cell aggregates of differentiated chondrocytes are evenly dispersed in a hydrogel matrix, and the resulting hydrogel matrix is immobilized onto the surface of a polymer scaffold while filling up the pores thereof. Since the cell aggregate-hydrogel-polymer scaffold complex according to the present invention can efficiently induce the regeneration of cartilage tissue similar to natural cartilage and retain high mechanical strength, flexibility, and uniform morphology during the cartilage regeneration, it can be effectively used as a cartilage therapeutic agent for the repair of cartilage defects and injuries.