Abstract:
A gear control system includes a pulse modulating circuit, a motor, and a central processing unit operatively coupled to the pulse modulating circuit and configured to control rotation of the motor from an original gear position to a desired gear position via the pulse modulating circuit. A motor position detecting device is operatively coupled to the central processing unit and detects the motor rotation position and transmits the motor position information corresponding to the motor rotation position to the central processing unit. The central processing unit determines whether the motor has reached the desired gear position based on the motor position information, and actuates the pulse modulating circuit to transmit pulses to actuate the motor to reach the desired gear position when the motor has not reached the desired gear position.
Abstract:
A battery electrode sheet comprises a conductive substrate and an electrode material coated on at least a portion of the conductive substrate. The coated portion of the conductive substrate comprises a first region, a second region, and a transition region between the first and second regions. The electrode material on the first region has a first thickness; and the electrode material on the second region has a second thickness, which is smaller than the first thickness. The electrode material on the transition region has a thickness that decreases between the first and second regions.
Abstract:
A lithium ion battery is provided comprising a shell, an electric core disposed in the shell with a space formed therebetween, and a non-aqueous electrolyte housed in the shell, in which the space is filled with a non-aqueous electrolyte resistant filler.
Abstract:
An electrochemical storage cell is disclosed. The cell includes a core having a cathode sheet, an anode sheet, and a separator sheet. The core is located snuggly within a shell having an open end. An end cap assembly is provided to close the open end. A terminal in electrical communication with one of the cathode sheet and the anode sheet extends through the end cap from an interior portion of the electrochemical storage cell to an external portion thereof. A protection cover that generally conforms to the outermost portions of the end cap assembly is provided and includes a first cover half having a first mating structure and a second cover half having a second mating structure for engagement with the first mating structure. The first and second cover halves are adapted for assembly with one another about the terminal.
Abstract:
A battery system for storing electrical power and supplying electrical power to a vehicle is disclosed. The system includes multiple battery packs, each with a plurality of cells. The cells in each battery pack are electrically connected with one another and the multiple battery packs are also electrically connected with one another to combine the total energy output of the cells of the system. The electrical connections between at least some of the cells include a severable feature, whereby the electrical connection is severed locally at the severable feature in response to an impact force that is in excess of a predetermined magnitude and/or an overcurrent/overtemperature condition.
Abstract:
A motor overload protecting method includes (a) detecting an instantaneous motor current value in real-time, calculating a current integral value in each of a corresponding integral period, and resetting the current integral value to 0 at an end of the integral period, (b) obtaining an overload coefficient according to the current integral value, which is greater than or equal to 0 and less than 1 when the current integral value is greater than or equal to a maximum motor current value, and is equal to 1 when the current integral value is less than the maximum motor current value, wherein the maximum motor current value is a maximum current integral value when the motor is in a non-overload condition; and (c) multiplying the instantaneous motor current value by the overload coefficient to obtain a new input current value, and operating the motor according to the new input current value.
Abstract:
Disclosed are a plate assembly for a battery, a core and a lithium ion battery. The plate assembly comprises a plate, a conductive terminal and a membrane bag, the plate is encapsulated in the membrane bag, an encapsulation line is formed when the membrane bag is encapsulated, and the conductive terminal is disposed at one end of the plate and protruded out of the membrane bag, wherein the encapsulation line has at least two loops around the periphery of the plate. The core comprises the plate assembly of the present invention. The lithium ion battery comprises the core of the present invention. Since the membrane bag included in the plate assembly of the present invention is encapsulated by at least two loops of encapsulation line around the periphery of the plate, the membrane bag can be encapsulated tightly, which can prevent effectively the membrane bag from being cracked, and prevent the short circuit from being occurred due to the contact of the positive and negative plates, and thereby effectively improves the mechanical impact resistance of the battery.
Abstract:
A polymer electrolyte comprises a first polymeric matrix, a second polymeric matrix, and a lithium salt. The first polymeric matrix comprises pores. The second polymeric matrix is disposed in at least some of the pores of the first polymeric matrix. The lithium salt is disposed in at least some of the pores of the first polymeric matrix.
Abstract:
In one aspect, a key-press structure comprises a frame and a plurality of keys disposed in said frame. Said frame comprises a main portion and two reflecting portions. The main portion has two opposite sides and the two reflecting portions are disposed on the two opposite sides of the main portion, respectively. Said reflecting portion has a reflective surface facing toward the main portion. Said keys are made of a transparent material, and the keys comprise characters formed on the internal surface of said keys. In another aspect, a method of preparing a key-press structure comprises forming a frame that includes a main portion and two reflecting portions. The reflecting portions each have a reflective surface. The main portion has two opposite sides that is connected to the two reflecting portions. The method further comprises forming characters on the internal surface of a plurality of keys, and disposing said keys in the main portion of the frame.
Abstract:
A hybrid power drive system includes an engine, a first motor, a first clutch operatively coupled between the engine and the first motor, a first decelerating mechanism having an input portion operatively coupled between the first clutch and the first motor, where the input portion is configured to receive rotational power from the first motor and/or the engine. The first decelerating mechanism has an output portion operative to drive at least one first wheel, and a second motor is operatively coupled to at least one second wheel through a second decelerating mechanism. An energy storage device is coupled separately to the first motor and to the second motor. The engine, the first clutch and the first motor are connected in sequence, and the second decelerating mechanism and the at least one second wheel are connected in sequence. Various combinations of operating modes are provided to meet energy efficiency requirements and user power demands.