Cysteine-reactive ligand discovery in proteomes

    公开(公告)号:US10782295B2

    公开(公告)日:2020-09-22

    申请号:US14911316

    申请日:2014-08-13

    摘要: Cells produce electrophilic products with the potential to modify and affect the function of proteins. Chemoproteomic methods have provided a means to qualitatively inventory proteins targeted by endogenous electrophiles; however, ascertaining the potency and specificity of these reactions to identify the most sensitive sites in the proteome to electrophilic modification requires more quantitative methods. Here, we describe a competitive activity-based profiling method for quantifying the reactivity of electrophilic compounds against 1000+ cysteines in parallel in the human proteome. Using this approach, we identify a select set of proteins that constitute hot spots for modification by various lipid-derived electrophiles, including the oxidative stress product 4-hydroxnonenal (HNE). We show that one of these proteins, ZAK kinase, is labeled by HNE on a conserved, active site-proximal cysteine, resulting in enzyme inhibition to create a negative feedback mechanism that can suppress the activation of JNK pathways by oxidative stress.

    Oxidation of alkanes to alcohols
    70.
    发明授权

    公开(公告)号:US10745340B2

    公开(公告)日:2020-08-18

    申请号:US14770039

    申请日:2014-02-25

    IPC分类号: C07C67/035

    摘要: The invention provides processes and materials for the efficient and cost-effective functionalization of alkanes, such as methane from natural gas, to provide esters, alcohols, and other compounds. The method can be used to produce liquid fuels such as methanol from a natural gas methane-containing feedstock. The soft oxidizing electrophile, a compound of a main group, post-transitional element such as Tl, Pb, Bi, and I, that reacts to activate the alkane C—H bond can be regenerated using inexpensive regenerants such as hydrogen peroxide, oxygen, halogens, nitric acid, etc. Main group compounds useful for carrying out this reaction includes haloacetate salts of metals having a pair of available oxidation states, such as Tl, Pb, Bi, and I. The inventors herein believe that a unifying feature of many of the MXn electrophiles useful in carrying out this reaction, such as Tl, Pb, and Bi species, is their isoelectronic configuration in the alkane-reactive oxidation state; the electrons having the configuration [Xe]4f145d10, with an empty 6s orbital. However, the iodine reagents have a different electronic configuration.