摘要:
A method of programming a memory cell is described. First, a first programming operation is performed to inject electrons into a nitride layer adjacent to a side of a drain. The first programming operation includes applying a first gate voltage to a gate, applying a first drain voltage to the drain, applying a first source voltage to a source, and applying a first substrate, voltage to a substrate. Then, a second programming operation is performed to inject the electrons into the nitride layer adjacent to a side of the source. The second programming operation includes applying a second gate voltage to the gate, applying a second drain voltage to the drain, applying a second source voltage to the source, and applying a second substrate voltage to the substrate. The second gate voltage is less than the first gate voltage.
摘要:
A method of identifying logical information in a cell, particularly in a programming by hot hole injection nitride electron storage (PHINES) cell by one-side reading scheme is disclosed. The method comprise steps of: erasing the first region and the second region of PHINES cell by increasing a local threshold voltage (Vt) to a certain value; programming at least one of the first region and the second region of the PHINES cell by hot hole injection; and reading a logical state of the PHINES cell by measuring an output current of one of the first region and the second region; wherein different quantity of the output current is caused by interaction between different quantity of the hot hole stored in the first region and the second region, so as to determine the logical state of the PHINES cell by one-side reading scheme.
摘要:
A semiconductor process test structure comprises an electrode, a charge-trapping layer, and a diffusion region. The test structure is a capacitor-like structure in which the charge-trapping layer will trap charges during various processing steps. Gate-induced drain leakage (GIDL) measurement techniques can then be used to characterize the charging status of the test structure.
摘要:
Charge trapping memory devices and methods are described for increasing a second bit operation window by a fringe-induced effect. The fringe-induced effect occurs in areas underneath a word line so that when a hole injection method is applied to a memory device, hole charges are stored in a charge trapping layer that intersects with a word line and the hole charges are stored along fringes of the word line. In one embodiment, a virtual ground array comprises a charge trapping layer that is disposed between two dielectrics such that there is not a charge trapping layer over source and drain regions. After a hole injection is applied to the virtual ground array, hole charges are stored along fringes of each word line given the fringes of the word line has a larger electrical field relative to non-fringe areas of the word line.
摘要:
The present invention describes a uniform program method and a uniform erase method of a charge trapping memory by employing a substrate transient hot electron technique for programming, and a substrate transient hot hole technique for erasing, which emulate an FN tunneling method for NAND memory operation. The methods of the present invention are applicable to a wide variety of charge trapping memories including n-channel or p-channel SONOS types of memories and floating gate (FG) type memories. the programming of the charge trapping memory is conducted using a substrate transient hot electron injection in which a body bias voltage Vb has a short pulse width and a gate bias voltage Vg has a pulse width that is sufficient to move electrons from a channel region to a charge trapping structure.
摘要:
A method of programming data regions in a nitride read-only memory cell is described. In an erased state, the nitride read-only memory cell exhibits a low Vt value. A data region that is to be programmed to a highest Vt value is programmed first. Remaining data regions in the nitride read-only memory cell are programmed in a time order according to their descending Vt values. For a nitride read-only memory cell that, in an erased state, exhibits a high Vt value, a data region that is to be programmed to a lowest Vt value is programmed first with remaining data regions programmed in a time order according to their ascending Vt values.
摘要:
A memory array comprising vertical memory cells does not require any isolation layers between cells. Thus, a very compact, high density memory array can be achieved. Each memory cell in the memory array is configured to store 4 bits of data per cell. Multi-level charge techniques can be used to increase the number of bit per cell and achieve further increased density for the memory array.
摘要:
A non-volatile memory cell may include a semiconductor substrate; a source region in a portion of the substrate; a drain region within a portion of the substrate; a well region within a portion of the substrate. The memory cell may further include a first carrier tunneling layer over the substrate; a charge storage layer over the first carrier tunneling layer; a second carrier tunneling layer over the charge storage layer; and a conductive control gate over the second carrier tunneling layer. Specifically, the drain region is spaced apart from the source region, and the well region may surround at least a portion of the source and drain regions. In one example, the second carrier tunneling layer provides hole tunneling during an erasing operation and may include at least one dielectric layer.
摘要:
A method of using a non-volatile memory that utilizes a charge-trapping layer for data storage is described. A refresh step is performed, after the non-volatile memory is subject to multiple write/erase cycles causing hard-to-erase electrons in the charge-trapping layer, to eliminate the hard-to-erase electrons. After the refresh step, the non-volatile memory is used again.
摘要:
An Assisted Charge (AC) Memory cell includes a transistor that includes, for example, a p-type substrate with an n+ source region and an n+ drain region implanted on the p-type substrate. A gate electrode can be formed over the substrate and portions of the source and drain regions. The gate electrode can include a trapping layer. The trapping layer can be treated as electrically split into two sides. One side can be referred to as the “AC-side” and can be fixed at a high voltage by trapping electrons within the layer. The electrons are referred to as assisted charges. The other side of can be used to store data and is referred to as the “data-side.” The abrupt electric field between AC-side and the data-side can enhance programming efficiency.