Abstract:
Semiconductor heterostructures to reduce short channel effects are generally described. In one example, an apparatus includes a semiconductor substrate, one or more buffer layers coupled to the semiconductor substrate, a first barrier layer coupled to the one or more buffer layers, a back gate layer coupled to the first barrier layer wherein the back gate layer includes a group III-V semiconductor material, a group II-VI semiconductor material, or combinations thereof, the back gate layer having a first bandgap, a second barrier layer coupled to the back gate layer wherein the second barrier layer includes a group III-V semiconductor material, a group II-VI semiconductor material, or combinations thereof, the second barrier layer having a second bandgap that is relatively larger than the first bandgap, and a quantum well channel coupled to the second barrier layer, the quantum well channel having a third bandgap that is relatively smaller than the second bandgap.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
Quantum-well-based semiconductor devices and methods of forming quantum-well-based semiconductor devices are described. A method includes providing a hetero-structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.
Abstract:
Embodiments of the invention relate to apparatus, system and method for use of a memory cell having improved power consumption characteristics, using a low-bandgap material quantum well structure together with a floating body cell.
Abstract:
Embodiments of a phase-stable amorphous high-κ dielectric layer in a device and methods for forming the phase-stable amorphous high-κ dielectric layer in a device are generally described herein. Other embodiments may be described and claimed.
Abstract:
Embodiments of the invention relate to apparatus, system and method for use of a memory cell having improved power consumption characteristics, using a low-bandgap material quantum well structure together with a floating body cell.
Abstract:
Quantum-well-based semiconductor devices and methods of forming quantum-well-based semiconductor devices are described. A method includes providing a hetero-structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.
Abstract:
Recessed channel array transistor (RCAT) structures and method of formation are generally described. In one example, an electronic device includes a semiconductor substrate, a first fin coupled with the semiconductor substrate, the first fin comprising a first source region and a first drain region, and a first gate structure of a recessed channel array transistor (RCAT) formed in a first gate region disposed between the first source region and the first drain region, wherein the first gate structure is formed by removing a sacrificial gate structure to expose the first fin in the first gate region, recessing a channel structure into the first fin, and forming the first gate structure on the recessed channel structure.
Abstract:
The present invention relates to a Tunnel Field Effect Transistor (TFET), which utilizes angle implantation and amorphization to form asymmetric source and drain regions. The TFET further includes a silicon germanium alloy epitaxial source region with a conductivity opposite that of the drain.
Abstract:
An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.