Abstract:
A photoconductor that includes, for example, a substrate, an optional ground plane layer, an undercoat layer thereover wherein the undercoat layer contains an aminosilane and a phenol polysulfide, a photogenerating layer, and at least one charge transport layer.
Abstract:
A photoconductor that includes, for example, a backing layer, a supporting substrate, a photogenerating layer, and a charge transport layer, and where the outermost layer of the backing layer is comprised of a mixture of a glycoluril resin and a polyacetal resin.
Abstract:
A method for singulating semiconductor wafers is disclosed. A preferred embodiment comprises forming scrub lines on one side of the wafer and filling the scrub lines with a temporary fill material. The wafer is then thinned by removing material from the opposite side of the wafer from the scrub lines, thereby exposing the temporary fill material on the opposite side. The temporary fill material is then removed, and the individual die are removed from the wafer.
Abstract:
A photoconductor that includes, for example, a supporting substrate, an undercoat layer thereover wherein the undercoat layer contains a metal oxide a phenolic resin and a dendritic polyester polyol; a photogenerating layer; and at least one charge transport layer.
Abstract:
Exemplary embodiments provide an intermediate transfer member used for electrophotographic devices, wherein an outermost layer of the intermediate transfer layer can include a plurality of fluoroelastomer-coated carbon nanotubes dispersed in a fluoroplastic matrix to provide desirable surface properties useful for the intermediate transfer member.
Abstract:
Provided are coating compositions for imaging components, methods of forming imaging components, and imaging components such as, for example, intermediate transfer belts, transfer belts, bias charge rolls, bias transfer rolls, and a magnetic roller sleeve. An exemplary imaging component can include an ultraviolet (UV) cured composite, the UV cured composite including a plurality of conductive species substantially uniformly dispersed in a UV cured acrylate polymer, wherein each of the plurality of conductive species can be selected from a group consisting of salts of organic sulfonic acid, esters of phosphoric acid, esters of fatty acids, ammonium salts, and phosphonium salts, and wherein the UV cured composite can have a surface resistivity in the range of about 107 Ω/square to about 1013 Ω/square.
Abstract:
A photoconductor that includes, for example, a supporting substrate, a photogenerating layer, and an (enylaryl)bisarylamine containing charge transport layer.
Abstract:
There is provided herein an intermediate transfer member. This intermediate transfer member includes a substrate layer. A surface layer is disposed on the substrate layer is disposed on the substrate layer and includes conductive particles having thereon a shell comprising a polyhedral oligomeric silsequioxane dispersed in a polymer. A method of manufacturing and intermediate transfer member is also disclosed.