Abstract:
An edge flap arrangement for an aircraft wing includes a main flap element and an actuator. A linkage arrangement supports the main flap. The linkage arrangement includes a drop hinge link arrangement. The drop hinge link arrangement includes a fixed strut and a drop link. The fixed strut and the drop link are pivotally connected by a hinge point. The hinge point includes an hourglass bearing. The hourglass bearing includes an inner member, an outer member, and a plurality of hourglass rollers. Any combination of the inner member, the outer member, and the hourglass rollers are fabricated from CREN, Cronidur 30, XD15NW, 422 Stainless Steel, CRES, and/or 440C Stainless Steel. A cage is disposed between the inner member and the outer member. The cage includes a plurality of first rails and a plurality of second rails. Opposing pairs of first rails and second rails define a plurality of pockets.
Abstract:
A method for preparing a surface of a substrate for bonding a material to the surface. The apparatus employed includes one or more optical amplification devices (OAD), one or more drivers, the substrate and a base. The one or more OAD and/or the substrate are moveably coupled to the one or more drivers. The one or more OAD is activated to emit a beam of energy. The one or more OAD and/or the substrate move relative to one another while the one or more OAD is activated. The movement of the one or more OAD and/or the substrate relative to one another forms (via the beam of energy) a pattern on the surface of the substrate. The pattern formed on the surface of the substrate allows the material to bond with a greater degree of adhesion.
Abstract:
A bearing includes a split outer race having a first outer race member and a second outer race member that form an annular ring. The bearing includes an activation member that is rotatable from a first position to a second position and is at least partially disposed in the annular ring. A locking feature is defined by the first outer race member, the second outer race member and the activation member. The locking feature has an unlocked position and a locked position. The unlocked position corresponds to the first position of the activation member and the locked position corresponds to the second position of the activation member.
Abstract:
A swaged bearing assembly includes a flange mounted thereon. A bearing inner member has an outer surface at least a portion of which defines an outer engagement surface. A bearing outer member is swaged around the inner member and the inner member is misalignable and rotatable in relation to the outer member. The outer member has an outer surface and an inner surface at least a portion of which defines an inner engagement surface. An area of engagement is defined by an interface of the inner engagement surface of the outer member and the outer engagement surface of the inner member. A flange is mounted on the outer surface of the outer member.
Abstract:
A spherical bearing includes a split outer ring having a spherical radially inner facing surface, an axially outward facing shoulder and a radially outward extending first groove formed therein. A first snap ring is snap fit in the first groove. The spherical bearing includes an inner race defining a spherical exterior surface and having a radially inward extending second groove. A second snap ring is snap fit into the second groove. A seal extends between the outer ring and the inner race and includes a retaining ring secured to a second end of the seal. A first end of the seal defines a lip extending radially inward. The lip is seated against the second snap ring. The retaining ring is positioned between the first snap ring and the axially outward facing shoulder. The seal is axially compressed between the axially outward facing shoulder and the second snap ring.
Abstract:
A rod end is provided for an actuator for a turbocharger high temperature wastegate. The rod end includes a stem configured to fixedly engage an actuator rod, a socket secured to the stem, and a spherical bearing disposed within the socket. The bearing includes an outer member and an inner member disposed at least partially within the outer member. The inner member is misalignable and rotatable in relation to the outer member. An area of engagement is defined by an interface of an inner engagement surface of the outer member and an outer engagement surface of the inner member. The spherical bearing is configured to withstand temperatures in excess of 260° C. (500° F.).
Abstract:
A roller assembly for a diesel engine used in a high mileage vehicle includes a roller having an exterior roller surface and an interior surface that defines a bore extending therethrough. A pin is positioned in the bore and defines an exterior pin surface. A plurality of rolling elements is positioned between the exterior pin surface and the roller interior surface. Each of the rolling elements rollingly engages the exterior pin surface and the roller interior surface. The roller assembly defines a clearance of between about 0.01 mm to about 0.03 mm between the rolling elements, the exterior pin surface and the interior surface. The roller assembly is configured to achieve extended life criteria wherein the clearance does not increase to more than 0.02 mm to 0.06 mm after 500,000 miles of travel of a vehicle powered by a diesel engine having the roller assembly installed therein.
Abstract:
A top drive thrust bearing configured for use in a heavy loaded top drive system. The top drive thrust bearing includes an upper plate; a lower plate; and a plurality of rollers disposed between the upper plate and the lower plate. The composition of the top drive thrust bearing comprising a non-vacuum arc remelted steel including, in weight percent (%), about 0.15% to about 0.18% carbon (C), about 0.15% to about 0.4% silicon (Si), about 0.4% to about 0.7% manganese (Mn), 0% to about 0.025% phosphorus (P), about 0.0005% to about 0.002% sulfur (S), about 0.0002% to about 0.0007% oxygen (O), about 0.001% to about 0.003% titanium (Ti), about 1.3% to about 1.6% chromium (Cr), about 3.25% to about 3.75% nickel (Ni), about 0.0005% to about 0.003% calcium (Ca), about 0.15% to about 0.25% molybdenum (Mo), balance iron (Fe). The top drive thrust bearing of the top drive system is configured to achieve an extended life cycle at least about equivalent to a life factor of three for a vacuum arc remelted steel.
Abstract:
A spherical bearing has an outer ring with a concave bearing surface and an inner ring having a convex bearing surface, which is in sliding engagement with the concave bearing surface. A lubrication groove is formed in the convex bearing surface and/or the concave bearing surface. The lubrication groove is defined by a concave central portion and by convex side portions. The concave central portion has a first radius of curvature and the convex side portions have a second radius of curvature. The second radius of curvature is at least 0.7 times the first radius of curvature.
Abstract:
A link apparatus includes a tubular member that retains 90% of ultimate tensile strength at a temperature of up to 625°. Two conical adapters are mechanically joined to respective ends of the tubular member. Two rod ends include a threaded shank and a socket. One threaded shank is threaded into a right hand threaded base of one conical adapter, and the other threaded shank is threaded into a left hand threaded base of the other conical adapter. Each of the sockets have a bearing assembly disposed therein including an outer race, a ball disposed therein, and a low-friction liner disposed between the outer race and ball for mitigating moment loading on the tubular member. The cross-sectional area of the tubular member is about equal to the cross sectional area of the rod ends. The tubular member is tensionable by rotation relative to the rod ends.