摘要:
An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
摘要:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch disposed between the diversion circuit and the AIMD electronics for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
摘要:
An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
摘要:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
摘要:
One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
摘要:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
摘要:
An antenna includes a differential transmission line and a center conductor, where the center conductor is at least partially contained within the differential transmission line and at least partially protruding therefrom. A first conductive flat element is connected to the center conductor and a flat meander-line structure is integral with the first conductive flat element. In addition, a second conductive flat element is integral with the flat meander-line structure.
摘要:
Methods and systems for 3D comb filtering of a video signal are provided. Aspects of the method may include generating a plurality of interpolated pixels for corresponding video samples for a first video frame, determining at least one direction of least bandwidth among the video samples and the interpolated pixels, and blending combing according to the determined direction of least bandwidth. A plurality of interpolated pixels for corresponding video samples may be generated in a first pixel line of the first video frame. The plurality of interpolated pixels in the first pixel line may be generated, so that each of the plurality of interpolated pixels in the first pixel line is one quarter cycle phase-shifted from a corresponding adjacent pixel in the first pixel line.
摘要:
A bracket for securing an antenna to a ceiling grid system has a first opening to allow the bracket to be secured to a connector mechanically coupled to the ceiling grid system and a second opening to allow an electrical connection to pass therethrough. The second opening is offset a distance from the first opening to allow the electrical connection to extend upwardly without being obstructed by the ceiling grid.
摘要:
Separation of luma and chroma in a video. In an embodiment, values on a current line of the sampled video signal, at ¼-period intervals, are compared with values on a previous line of the sampled video signal, at ¼-period intervals. Values on the current line of the sampled video signal are compared to values on a subsequent line of the sampled video signal. This gives information about the vertical frequency content. Values on the current line are compared with values having the same chroma phase on the same line to provide information about horizontal frequency content. The data of vertical and horizontal frequency logic are used by the decision logic to determine the appropriateness of combing based on these comparisons. If combing is not appropriate, the signal is bandpass filtered instead of combed. The low-pass and combing filters are applied to the original signal, not an interpolated or resampled signal.