Abstract:
Mono- and diimide perylene and naphthalene compounds, N- and/or core-substituted with electron-withdrawing groups, for use in the fabrication of various device structures.
Abstract:
New organic light-emitting diodes and related electroluminescent devices and methods for fabrication, using siloxane self-assembly techniques.
Abstract:
Provided are mono- and diimide naphthalene compounds for use in the fabrication of various device structures. In some embodiments, the naphthalene core of these compounds are mono-, di-, or tetra-substituted with cyano group(s) or other electron-withdrawing substituents or moieties. Such mono- and diimide naphthalene compounds also can be optionally N-substituted.
Abstract:
The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.
Abstract:
Diimide-based semiconductor materials are provided with processes for preparing the same. Composites and electronic devices including the diimide-based semiconductor materials also are provided.
Abstract:
The present invention introduces a novel route toward microstructural orientation into organic films, using multiple hydrogen-bonding to self-assemble chromophore molecules into electro-optic films in a net polar orientation. High-quality, thick films (up to micrometers) with molecular net dipole orientations can be fabricated under vacuum in hours. The film microstructure is intrinsically acentric; and the orientation is robust.
Abstract:
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR′n}+{A}− wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C1-C20 hydrocarbyl; R′ are independently selected from hydride, C1-C20 hydrocarbyl, SiR″3, NR″2, OR″, SR″, GeR″3, SnR″3, and C═C-containing groups (R″=C1-C10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Abstract:
A new electro-optic (EO) phase modulator constructed from a combination of a low-loss passive polymer waveguide and a self-assembled chromophore superlattice (SAS) with an intrinsically polar microstructure. In contrast to typical polymer-based modulators, the present invention utilizes a siloxane SA methodology that enables the acentric alignment of constituent chromophores during film growth without the need for post-deposition electric field poling. The guiding layer is constructed of the SAS and the glassy polymer Cyclotene™. The use of SiO2, Cytop™ and Cyclotene™ glassy polymers, results in a straightforward device fabrication process that is compatible with the thermally and photochemically robust SAS. Thus, nanoscale control of the film architecture results in greatly simplified macroscopic device fabrication. The present invention provides a SAS-based electro-optic modulator demonstrating excellent electro-optic response properties and a &pgr; phase shift.
Abstract:
New organic light-emitting diodes and related electroluminescent devices and methods for fabrication, using siloxane self-assembly techniques.
Abstract:
A process for treating a composition containing a substantial proportion of trimethyflolpropane bis-monolinear formal (TMP-BMLF) or trimethylolethane bis-monolinear formal (TME-BMLF), e.g., a heavy ends residue obtained from the purification of a crude trimethylolpropane (TMP) or trimethylolethane (TME) product, wherein the composition is contacted at an elevated temperature with a strong acid catalyst, e.g., methanesulfonic acid, to produce a composition containing significantly increased amounts of TMP and trimethylolpropane monocyclic formal (TMP-MCF) or TME and trimethylolethane monocyclic formal (TME-MCF) respectively. Also disclosed is a process for reacting TMP-MCF or TME-MCF, either in substantially pure form or as present in the light ends overhead stream obtained in a finishing treatment of crude TMP or TME, with a monohydric or dihydric alcohol, e.g., ethylene glycol, in the presence of a strong acid catalyst to obtain additional TMP or TME and an acetal by-product, e.g., 1,3-dioxolane; and a process for directly reacting the TMP-BMLF or TME-BMLF present in a composition, e.g., the heavy ends residue obtained in the purification of TMP or TME, with a monohydric or dihydric alcohol, e.g., ethylene glycol, in the presence of a strong acid to obtain additional TMP or TME and an acetal by-product, e.g., 1,3-dioxolane.