Abstract:
Disclosed is a process for opening naphthenic rings of naphthenic ring-containing compounds, along with catalysts which can be used in that process. The ring opening is accomplished using a ring opening catalyst comprising Ir on a composite support of alumina and acidic silica-alumina molecular sieve. The ring opening activity is not significantly deactivated by exposure to oxygen at greater than about 250° C.
Abstract:
Catalytic reforming wherein the lead reactor contains a catalyst comprised of platinum and a relatively low level of Re on an inorganic oxide support. The tail reactor contains a tin modified platinum-iridium catalyst wherein the metals are substantially uniformly dispersed throughout the inorganic oxide support.
Abstract:
Tin modified platinum-iridium catalysts provide high yields of C.sub.5 +liquid reformate in catalytic reforming, concurrent with high activity. In particular, the tin modified platinum-iridium catalysts are of unusually high selectivity, as contrasted with known iridium promoted platinum catalysts. The high selectivity is manifested in reforming a naphtha feed in a reactor charged to capacity with the catalyst, but particularly when used in the dehydrocyclization zone, or tail reactor of a series of reactors, while the lead reactors of the series contain a non tin-containing platinum catalyst, especially a platinum-iridium, or a platinum-rhenium catalyst. The tin modified platinum-iridium catalysts are also highly active, with only moderate loss in the high activity for which iridium stabilized platinum catalysts are known.
Abstract:
Disclosed is a catalyst composition for reforming a naphtha feed, which composition is composed of the metals, platinum, rhenium, and iridium on a refractory porous inorganic oxide support material, wherein the concentration of each of the metals platinum and rhenium is at least 0.1 percent and iridium at least 0.15 percent, and at least one of the metals is present in a concentration of at least 0.3 percent, and the sum-total concentration of the metals is greater than 0.9 percent.
Abstract:
A method for reforming naphtha feeds which comprises contacting said feed, in the presence of hydrogen and at reforming conditions, with a catalyst comprised of platinum and iridium agglomerated to exhibit a crystallinity of at least 50% as measured by X-ray, and an alumina support material modified with at least about 100 wppm of Si and at least 10 wppm and one or more alkaline earth metals selected from Ca, Mg, Ba, and Sr, wherein the total amount of modifier does not exceed about 5000 wppm.
Abstract:
A reforming catalyst comprised of 0.01 to 5 wt. % Pt, alumina, and a modifier comprised of about 100 to 500 wppm Si and at least 10 wppm of one or more alkaline-earth metal selected from Ca, Mg, Ba, and Sr wherein the total amount of modifier does not exceed about 5,000 wppm.
Abstract:
Disclosed is a process for improving the octane quality of a naphtha which process comprises contacting the naphtha, at pressures ranging from about 25 psig to about 175 psig, with hydrogen introduced at a rate ranging from about 1000 SCF/B to about 5000 SCF/B, at a temperature from about 800.degree. F. to about 1100.degree. F., and a space velocity ranging from about 1 W/H/W to about 5 W/H/W, and with a catalyst comprised of the metals platinum, rhenium, and iridium on a refractory porous inorganic oxide support, wherein the concentration of each of platinum and rhenium is at least 0.1 percent, and that of iridium is at least 0.15 percent, and at least one of said metals is present in a concentration of at least 0.3 percent, and the sum total of said metals is present in a concentration greater than 0.9 percent.
Abstract translation:公开了一种改善石脑油的辛烷值的方法,该方法包括使石脑油在约25psig至约175psig的压力下与以约1000SCF / B至约5000SCF / B的速率引入的氢气接触 在约800°F至约1100°F的温度和约1W / H / W至约5W / H / W的空间速度,以及由金属铂,铼 和铱在耐火多孔无机氧化物载体上,其中铂和铼的各自的浓度为至少0.1%,铱的浓度为至少0.15%,并且所述金属中的至少一种以浓度为 至少0.3%,所述金属的总和以大于0.9%的浓度存在。
Abstract:
A start-up procedure wherein a halogenated rhenium-containing catalyst, to improve its performance in reforming naphtha feeds, is contacted with water, added with the hydrogen and said feed. During the start-up period, preferably on initiation of the start-up period after aromatics production has begun, a naphtha feed, hydrogen and water are passed cocurrently through the several reactors of a reforming unit and reacted over the halogenated rhenium-containing catalyst. Water is generally added with the naphtha and hydrogen, preferably to the initial reactor of the series of reactors of the reforming unit, in concentration ranging from about 100 vppm of hydrogen to about 10,000 vppm of hydrogen, preferably from about 100 vppm to about 5000 vppm of hydrogen.
Abstract:
A rhenium-containing catalyst, particularly one comprising platinum and rhenium, composited with a porous inorganic support material, especially alumina, is found to be more selective in hydrocarbon conversion reactions, particularly reforming (hydroforming) when pretreated in a sequence which includes the steps of oxidation, dry hydrogen reduction, and sulfiding. In all embodiments, the hydrogen reduction step is conducted at conditions sufficient to remove product water from the catalyst as it is produced until the catalyst becomes dry, or desiccated, and to continue such treatment until the amount of water contained in the exit gas is less than about 1000 ppm, preferably less than about 500 ppm. In a preferred embodiment, the catalyst is desiccated by an initial high temperature oxidation treat to activate the porous inorganic oxide base, or alumina, and then the hydrogen reduction step is performed at a lower temperature than that employed to effect the oxidation.
Abstract:
A catalyst constituted of a composite which includes hydrogenation-dehydrogenation components comprised of palladium and rhenium to which a small amount of iridium is added to increase the aromatic content of the reformate, particularly the high octane C.sub.9 + aromatics, and reduce the cooking tendency of the catalyst. It also encompasses the process of employing such catalyst in reforming, particularly high severity low pressure, semi-regenerative reforming.