Abstract:
A system and method for protecting memory instructions against faults are described. The system and method include converting the slave instructions to dummy operations, modifying memory arbiter to issue up to N master and N slave global/shared memory instructions per cycle, sending master memory requests to memory system, using slave requests for error checking, entering master requests to the GM/LM FIFO, storing slave requests in a register, and comparing the entered master requests with the stored slave requests.
Abstract:
A system and method for protecting memory instructions against faults are described. The system and method include converting the slave instructions to dummy operations, modifying memory arbiter to issue up to N master and N slave global/shared memory instructions per cycle, sending master memory requests to memory system, using slave requests for error checking, entering master requests to the GM/LM FIFO, storing slave requests in a register, and comparing the entered master requests with the stored slave requests.
Abstract:
Methods and apparatus are described. A method includes an accelerated processing device running a process. When a maximum time interval during which the process is permitted to run expires before the process completes, the accelerated processing device receives an operating-system-initiated instruction to stop running the process. The accelerated processing device stops the process from running in response to the received operating-system-initiated instruction.
Abstract:
Processing of non-real-time and real-time workloads is performed using discrete pipelines. A first pipeline includes a first shader and one or more fixed function hardware blocks. A second pipeline includes a second shader that is configured to emulate the at least one fixed function hardware block. First and second memory elements store first state information for the first pipeline and second state information for the second pipeline, respectively. A non-real-time workload executing in the first pipeline is preempted at a primitive boundary in response to a real-time workload being dispatched for execution in the second pipeline. The first memory element retains the first state information in response to preemption of the non-real-time workload. The first pipeline is configured to resume processing the subsequent primitive on the basis of the first state information stored in the first memory element.
Abstract:
A system, method and a computer program product are provided for hybrid rendering with deferred primitive batch binning. A primitive batch is generated from a sequence of primitives. Initial bin intercepts are identified for primitives in the primitive batch. A bin for processing is identified. The bin corresponds to a region of a screen space. Pixels of the primitives intercepting the identified bin are processed. Next bin intercepts are identified while the primitives intercepting the identified bin are processed.
Abstract:
Disclosed methods, systems, and computer program products embodiments include synchronizing a group of workitems on a processor by storing a respective program counter associated with each of the workitems, selecting at least one first workitem from the group for execution, and executing the selected at least one first workitem on the processor. The selecting is based upon the respective stored program counter associated with the at least one first workitem.
Abstract:
A graphics processing unit (GPU) includes a plurality of programmable processing cores configured to process graphics primitives and corresponding data and a plurality of fixed-function hardware units. The plurality of processing cores and the plurality of fixed-function hardware units are configured to implement a configurable number of virtual pipelines to concurrently process different command flows. Each virtual pipeline includes a configurable number of fragments and an operational state of each virtual pipeline is specified by a different context. The configurable number of virtual pipelines can be modified from a first number to a second number that is different than the first number. An emulation of a fixed-function hardware unit can be instantiated on one or more of the graphics processing cores in response to detection of a bottleneck in a fixed-function hardware unit. One or more of the virtual pipelines can then be reconfigured to utilize the emulation instead of the fixed-function hardware unit.
Abstract:
Systems and techniques for generating and animating non-player characters (NPCs) within virtual digital environments are provided. Multimodal input data is received that comprises a plurality of input modalities for interaction with an NPC having a set of body features and a set of facial features. The multimodal input data is processed through one or more neural networks to generate animation sequences for both the body features and facial features of the NPC. Generating such animation sequences includes disentangling the multimodal input data to generate substantially disentangled latent representations, combining these representations with the multimodal input data, and using a large-language model (LLM) to generate speech data for the NPC. Further processing using reverse diffusion generates face vertex displacement data and joint trajectory data based on the combined representation and generated speech data. The face vertex displacement data, joint trajectory data, and speech data are used to produce an animated representation of the NPC, which is then provided to environment-specific adapters to animate the NPC within a virtual digital environment.
Abstract:
A method for hierarchical work scheduling includes consuming a work item at a first scheduling domain having a local scheduler circuit and one or more workgroup processing elements. Consuming the work item produces a set of new work items. Subsequently, the local scheduler circuit distributes at least one new work item of the set of new work items to be executed locally at the first scheduling domain. If the local scheduler circuit of the first scheduling domain determines that the set of new work items includes one or more work items that would overload the first scheduling domain with work if scheduled for local execution, those work items are distributed to the next higher-level scheduler circuit in a scheduling domain hierarchy for redistribution to one or more other scheduling domains.
Abstract:
Techniques for implementing accelerated draw indirect fetching are disclosed. A fetch accelerator enables streamlined data fetching by looping internally and filling a draw queue for a micro engine. By using a dedicated fetch accelerator rather than processing data fetches separately and individually using a conventional processor, significant processing overhead is eliminated and computational latency is reduced. Additionally, different types of aligned or unaligned data structures are usable with equivalent or nearly equivalent performance.