Abstract:
A method to control multiple radio access bearers is performed at a mobile wireless communication device when the mobile wireless communication device is connected to a radio network subsystem in a wireless communication network by first and second bidirectional radio access bearers. The mobile wireless communication device transmits a data packet on an uplink of the first bidirectional radio access bearer to the radio network subsystem. When the data packet is not correctly received by the radio network subsystem, the mobile wireless communication device retransmits the data packet repeatedly. After N retransmissions of the data packet, the mobile wireless communication device releases the first bidirectional radio access bearer while maintaining the second bidirectional radio access bearer. The first bidirectional radio access bearer provides a channel to transport packet switched data, and the second bidirectional radio access bearer provides a channel to transport circuit switched data.
Abstract:
Performing concurrent data communication and voice call monitoring using a single cellular radio. According to some embodiments, the UE may perform data communication, via the radio, using a first RAT, supported by a first SIM. The UE may also perform paging functions for a voice communication, via the radio, using a second RAT, supported by a second SIM. In some scenarios, the first and second RATs are the same. The data communication and the paging functions may be performed concurrently using shared physical layer resources. For example, the shared physical layer resources may comprise a shared software defined radio (SDR) configured to demodulate and/or decode signals of the data communication and the paging function. As another example, the shared physical layer resources may comprise a shared Rake receiver configured to demodulate signals of the data communication and the paging function.
Abstract:
Methods and apparatuses to use multiple receivers of a wireless communication device for fast return to a first network from a second network after termination of a Circuit Switched Fallback (CSFB) voice call is disclosed. A first receiver of the wireless communication device is used to process the CSFB voice call on the second network, while a second receiver of the wireless communication device is used to determine a strongest suitable cell available on the first network, while the voice call is active. A strongest suitable cell is instantly available to the wireless communication device after the CSFB voice call ends. In some embodiments, the first network is an LTE network, and the second network is a legacy network.
Abstract:
Methods and apparatus for minimizing scheduling collisions between networks. In one embodiment, the networks are substantially unsynchronized, and during hybrid network operation (e.g., LTE and CDMA 1X operation), a mobile device can place CDMA 1X voice calls while registered with the LTE network. However, since the LTE and CDMA 1X networks are not coordinated, the mobile device will experience scheduling collisions. In one variant, the LTE network accounts for predictable behaviors (such as CDMA 1X paging), and schedules low priority tasks during likely time interval conflicts. Consequently, even though the mobile device must tune away from the LTE network to check CDMA 1X pages, overall LTE network performance is minimally affected.
Abstract:
Transitioning a UE from a first RAT to a third RAT in an area having a first RAT, a second RAT, and a third RAT. The first RAT may be a second generation RAT, the second RAT may be a third generation RAT, and the third RAT may be a fourth generation RAT. The network of the first RAT may not provide information (e.g., a neighbor list) for the third RAT. The UE may use information to perform measurement of one or more base stations of the third RAT without attaching to the second RAT. For example, the UE may use pre-stored information to perform measurement of the third RAT. Alternatively, or additionally, the UE may receive the information (e.g., from a system information block) from the second RAT without attaching to the second RAT. The UE may then transition to from the first RAT to the third RAT.
Abstract:
An interface circuit in a computing device may communicate with user-interface devices using shared slots during time intervals. In particular, the computing device may transmit outgoing messages to the user-interface devices at a first predefined time during sequential time intervals when the user-interface devices transition from a sleep mode to a normal mode. In response, the computing device may receive incoming messages from one or more of the user-interface devices at a second predefined time following the first predefined time during the sequential time intervals. Then, the computing device may transmit a multicast message to the user-interface devices at a third predefined time during the sequential time intervals. In response to the given multicast message, one of the user-interface devices may communicate data to the computing device. Note that, in some instances, a multicast time slot may instead be used to communicate data to one of the user-interface devices.
Abstract:
This disclosure relates to techniques for scheduling radio resource control connections between a wireless device and a network element of a network in advance. According to some embodiments, a wireless device may provide an indication of one or more types of upcoming data traffic to the network element. The network element may schedule one or more radio resource control connections for the wireless device based at least in part on the indication of one or more types of upcoming data traffic. The network element may provide an indication of the scheduled radio resource control connection(s) to the wireless device. The wireless device and the network may establish the scheduled radio resource control connection at the scheduled time.
Abstract:
In some embodiments, an apparatus is configured to wirelessly communicate with a base station in a real-time internet protocol (IP) session using a first retransmission parameter in a first frame transmission scheme. In some embodiments, the apparatus is configured to determine a current performance metric and, based on the current performance metric, use a second, different retransmission parameter in a second frame transmission scheme for communications via the real-time IP session. In some embodiments, the retransmission parameter is a number of retransmissions or a number of hybrid automatic repeat request (HARQ) processes.
Abstract:
Methods to control reconfiguration of multiple radio access bearers in a mobile wireless device connected to a wireless network are described. The mobile wireless device is connected to the wireless network through a voice connection and a data connection simultaneously. The data connection is concurrently active with the voice connection. Transmission of one or more signaling messages for the data connection is delayed until the voice connection terminates. Representative signaling messages include messages that reconfigure a radio access bearer supporting the data connection and messages estimated to exceed a pre-determined transmission time interval.
Abstract:
Embodiments relate to a User Equipment (UE) device and associated method performing improved data roaming with reduced cost. The UE may comprise at least one radio, one or more processors, a first SIM entity and a second SIM entity. The first SIM entity may be configured to implement subscriber identity module (SIM) functionality for a subscribed voice and/or data plan of a first carrier. The second SIM entity may be configured to facilitate dynamic subscription to a local data plan of a second carrier when the UE is data roaming outside of a network of the first carrier. As one example, the UE, using the second SIM entity, may be configured to dynamically subscribe to a pay-as-you-go data plan of a second carrier, to which the user is not subscribed, when the user is data roaming outside of the first carrier's network. This dynamic subscribing may operate to reduce cost to the user, since the local data plan of the second carrier likely has less expensive data rates than those available during normal data roaming.