Abstract:
A display may have a thin-film transistor layer formed from a layer of thin-film transistor circuitry on a substrate, a color filter layer, and a layer of liquid crystal material interposed between the thin-film transistor layer and the color filter layer. The thin-film transistor layer, the liquid crystal layer, and the color filter layer may be sandwiched between upper and lower polarizers. A backlight unit may supply backlight illumination for pixels in the display. The color filter layer may have a black matrix with an array of openings. Color filter elements of different colors may be formed in the openings. The black matrix may have sidewalls that are steep or that are undercut. The profile of the black matrix helps block improperly colored off-axis light and thereby reduces undesired color mixing in the display.
Abstract:
A liquid crystal display may have a layer of liquid crystal material. The display may have an array of display pixel circuits. The display pixel circuits may each include a display pixel electrode that applies electric fields to a corresponding portion of the liquid crystal material. Thin-film transistor circuitry and other structures in the display pixels may control operation of the display pixels circuits. The thin-film transistor circuitry may be configured to handle operation of the display at multiple refresh rates. To accommodate multiple refresh rates, each pixel circuit may include a pair of transistors. A first transistor is used to apply data signals from a data line to the display pixel electrode. A storage capacitor is used to maintain the data signal on the electrode. The second transistor may be used to adjust the capacitance of the storage capacitor depending on the refresh rate of the display.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may include a liquid crystal display module and a reflective polarizer having an in-plane optical axis. The display may also include a backlight unit that includes a light source, a light guide element, and a reflector film coupled to a backside of the light guide element. The display may also include a light retardation layer such as a quarter wave film. The quarter wave film may be arranged between the reflective polarizer and the reflector film of the backlight unit. Partially polarized light that is output from a front side of the light guide element may have a first component parallel to the in-plane optical axis and a second component perpendicular to the in-plane optical axis of the reflective polarizer. The second component may be reflected from the reflective polarizer.
Abstract:
A display polarizer may have a polymer layer such as a polyvinyl alcohol layer coated with a dichroic dye such as iodine. A polymer layer such as a tri-acetyl cellulose layer may be formed on the polyvinyl alcohol layer so that the iodine is interposed between the polyvinyl alcohol layer and the tri-acetyl cellulose layer. To provide protection for the iodine layer, an additional polymer layer such as an additional tri-acetyl cellulose layer and a layer of adhesive may be formed on top of the polymer layer. A functional layer such as an antireflection layer may form an outermost layer in the polarizer. Compensation films may be formed beneath the polyvinyl alcohol layer. Additional display layers such as a lower polarizer layer and interposed layers such as a thin-film transistor layer, liquid crystal layer, and color filter layer may be formed below the compensation films.
Abstract:
Display ground plane structures may contain slits. Image pixel electrodes in the display may be arranged in rows and columns. Image pixels in the display may be controlled using gate lines that are associated with the rows and data lines that are associated with the columns. An electric field may be produced by each image pixel electrode that extends through a liquid crystal layer to an associated portion of the ground plane. The slits in the ground plane may have a slit width. Data lines may be located sufficiently below the ground plane and sufficiently out of alignment with the slits to minimize crosstalk from parasitic electric fields. A three-column inversion scheme may be used when driving data line signals into the display, so that pairs of pixels that straddle the slits are each driven with a common polarity. Gate line scanning patterns may be used that enhance display uniformity.
Abstract:
An electronic device may include a display system configured to produce light and a lens assembly that receives the light from the display panel. The lens assembly may include one or more lens elements, one or more cholesteric liquid crystal layers, one or more quarter wave plates, one or more linear polarizers, one or more reflective polarizers, and/or a partially reflective layer. The display system may include a display panel, a linear polarizer, one or more quarter wave plates, and/or a geometric phase lens.
Abstract:
A system such as a vehicle, building, or electronic device system may have a support structure with one or more windows. The support structure and window may separate an interior region within the system from a surrounding exterior region. Control circuitry may receive input such as user input and may adjust an adjustable layer in the window based on the input. The adjustable layer may be an adjustable light transmission layer. The adjustable light transmission layer may have a polymer matrix layer with embedded guest-host liquid crystal cells. Each cell may have liquid crystal material and dichroic dye. The adjustable light transmission layer may be operated in a dark state to prevent light from passing through the window, a clear state in which the window passes light, and intermediate states that exhibit intermediate light transmission levels.
Abstract:
An electronic device may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having one or more lens elements. The optical system may include a wave plate stack with one or more wave plates. The display system may include a polarizer stack with a linear polarizer and one or more wave plates. The optical system and display system may each include a negative dispersion quarter wave plate. A positive C-plate may be positioned adjacent to each quarter wave plate. The optical system may include a quarter wave plate having positive birefringence whereas the display system may include a quarter wave plate having negative birefringence. The optical system and display system may each include a quarter wave plate and a half wave plate.
Abstract:
Electrical shield line systems are provided for openings in common electrodes near data lines of display and touch screens. Some displays, including touch screens, can include multiple common electrodes (Vcom) that can have openings between individual Vcoms. Some display screens can have an open slit between two adjacent edges of Vcom. Openings in Vcom can allow an electric field to extend from a data line through the Vcom layer. A shield can be disposed over the Vcom opening to help reduce or eliminate an electric field from affecting a pixel material, such as liquid crystal. The shield can be connected to a potential such that electric field is generated substantially between the shield and the data line to reduce or eliminate electric fields reaching the liquid crystal.
Abstract:
Increasing resolution of liquid crystal displays may result in small distances between adjacent liquid crystal display pixels. This tight pixel spacing may reduce transmission through the liquid crystal display pixels and may result in cross-talk between the liquid crystal display pixels. To increase transmission and, correspondingly, display efficiency, a reflective layer may be included in the liquid crystal display. The reflective layer recycles backlight that may otherwise be absorbed, improving transmittance and efficiency. To reduce color shift and color mixing caused by cross-talk, the pixels may have their pixel electrodes arranged in a zigzag layout. Each pixel electrode may have a height that is less than or equal to the total height of the pixel divided by two. The pixel electrodes in a given row are also alternatingly coupled to first and second gate lines. This zigzag layout results in an increased distance between adjacent pixel electrodes, mitigating pixel cross-talk.