Abstract:
A method for constructing a space-time/space-frequency code, and a transmitting method and apparatus are provided, which relate to the field of wireless communication technologies. The method for constructing a space-time/space-frequency code includes: classifying at least two transmitter antennas into K groups, and classifying information symbols into K′ groups; constructing a Toeplitz matrix for information symbols in each group according to the number of transmitter antennas in a transmitter antenna group; and substituting the Toeplitz matrix for nonzero elements in an Orthogonal Space-Time Block Coding (OSTBC) matrix that is based on K and K′, and when the OSTBC matrix comprises a zero element, substituting a zero matrix with a corresponding dimension, for the zero element. The space-time code constructed with the above method has orthogonality.
Abstract:
Apparatus and method for generating parameters used in coding data in a data transmission system. The method determines a number of possible coding parameters to satisfy a target coding gain and selects the best set of parameters that balance the code word length and the error rate. In this manner, a minimum coding gain may be used, which minimizes cross-talk on a transmission link.
Abstract:
A method implemented by a user equipment includes selecting a first estimate of a signal-to-noise (SNR) ratio, calculating a first amplitude and first noise variance, calculating a second amplitude and a second noise variance, calculating a second SNR, calculating a resolution value, adjusting the first SNR, and performing estimation iterations until the resolution value is equal to a predetermined value.
Abstract:
A method of computer aided treatment planning is performed by generating and manipulating a three dimensional (3D) image of a region which includes at least one anatomical structure for which treatment, such as surgery, biopsy, tissue component analysis, prosthesis implantation, radiation, chemotherapy and the like, is contemplated. A virtual intervention, which simulates at least a portion of the contemplated treatment, is performed in the 3D image. The user can then determine the effect of the intervention and interactively modify the intervention for improved treatment results. Preferably, a warning is automatically provided if the intervention poses a risk of detrimental effect. The user can navigate through the contemplated region in the 3D image and assess the results. The treatment plans can be saved for comparison and post treatment evaluation.
Abstract:
A method of optical fabrication comprises coating a substrate with a photocuring material, controlling the application of light to the photocuring material so as to control the intensity and pattern of the light both in-plane and out of plane, and developing the photocuring material.
Abstract:
A user equipment includes an estimator. The estimator is configured to select a first estimate of a signal-to-noise (SNR) ratio, calculate a first amplitude and first noise variance, calculate a second amplitude and a second noise variance, calculate a second SNR, calculate a resolution value, adjust the first SNR, and perform estimation iterations until the resolution value is equal to a predetermined value.
Abstract:
An adaptive equalizer including an equalizer filter and a tap coefficients generator used to process a sample data stream derived from a plurality of received signals is disclosed. The tap coefficients generator includes an equalizer tap update unit, a vector norm square estimator, an active taps mask generator, a switch and a pilot amplitude reference unit used to minimize the dynamic range of the equalizer filter. A dynamic mask vector is used to mask active taps generated by the equalizer tap update unit when an unmasked signal output by the equalizer filter is selected by the switch to generate an error signal fed to the equalizer tap update unit. A fixed mask vector is used to mask active taps generated by the equalizer tap update unit when a masked signal output by the equalizer filter is used to generate the error signal.