Abstract:
The present invention is a method of manufacturing a high density capacitor for use in semiconductor memories. High etching selectivity between BPSG (borophosphosilicate glass) and CVD-oxide (chemical vapor deposition oxide) is used to fabricate a capacitor with a plurality of horizontal fins. First, a nitride layer is formed on a semiconductor substrate. A first conductive layer is then formed on the nitride layer. A stacked layer consists of BPSG and silicon oxide formed on the first conductive layer. Then a contact hole is formed in the stacked layer, the first conductive layer and the nitride layer. A highly selective etching is then used to etch the BPSG sublayers of the stacked layer. Next, a second polysilicon layer is formed in the contact hole and on the stacked layer, subsequently, a dielectric layer is formed on the second polysilicon layer. Then photolithography and etching processes are used to define the storage node. Next a third conductive layer is deposited over the dielectric layer, the stacked layer, and the first conductive layer, subsequently, performing an anisotropic etching to etch the third conductive layer and the second conductive layer. The stacked layer is removed by BOE solution. A dielectric film is then formed along the surface of the first, second, and third conductive layers. Finally, a fourth conductive layer is formed on the dielectric film. Thus, a crown-fin shaped capacitor with higher capacitance is fabricated.
Abstract:
A MOS transistor with a self-aligned silicide and a lightly doped drain ballast resistor for ESD protection on a semiconductor substrate is formed with the method in the present invention. The ESD protection devices in a ESD protective region are formed at the same time with the forming of the NMOS, PMOS, or both in a functional region. The transistors with a lightly doped drain (LDD) structure and an ultra-shallow junction can be manufactured. The short channel effect and it's accompanying hot carrier effect is eliminated. ESD damage from external connections to the integrated circuits are kept from the densely packed devices. The self-aligned silicide (salicide) technology employed in the present invention for forming low resistance contacts provides high operation speed with low heat generation. Integrated circuits with ESD hardness and high circuit operation speed of the functional devices are provided by the semiconductor manufacturing process employing the method disclosed.
Abstract:
The present invention proposes a novel structure of nonvolatile memories with recessed floating gates. A plurality of field oxides is formed on a semiconductor substrate. Buried bit lines are formed in the semiconductor substrate and beneath the field oxides. Between the field oxides over the buried bit lines, trenched floating gates are formed in the semiconductor substrate. Tunnel dielectrics are formed between the trenched floating gates and the semiconductor substrate. The interpoly dielectric is formed over the field oxides and the trenched floating gates and the control gates are formed on the interpoly dielectric. Because of the large area of the recessed tunnel dielectric and the recessed length of the channel, high-density shallow trench contactless nonvolatile memories can be achieved.
Abstract:
The method for forming a trench isolation includes the steps as follows. At first, a first pad layer is formed over the semiconductor substrate and a stacked layer is formed over the first pad layer. An opening is then defined in the first pad layer and the stacked layer. A portion of the first pad layer is removed to have an undercut region under the stacked layer. A second pad layer is formed on an exposed portion of the semiconductor substrate under the opening and the undercut region. Then a buffer layer within the undercut region and a sidewall structure on the stacked layer are formed. A portion of the second pad layer uncovered by the sidewall structure is removed. A portion of the semiconductor substrate uncovered by the stacked layer and the second pad layer is then removed to form a trench. A first insulator layer is formed over the trench and within the undercut region. Thus a trench structure with a first insulator layer can be formed.
Abstract:
The process includes the following steps. At first, an isolation region in the semiconductor substrate is formed to separate the semiconductor substrate into a PMOS region, a NMOS region, and an ESD protective region. Gate structures are then formed on the PMOS region, the NMOS region, and the ESD protective region. A doping process is performed to the NMOS region and the ESD protective region, with first dopants for a lightly doped region in the semiconductor substrate. Another doping process is performed to the PMOS region and the ESD protective region, with second dopants for a PMOS anti-punchthrough region and an ESD double diffused region. Spacer structures are formed around the gate structures. The NMOS region and the ESD protective region are then doped with third dopants, for a n-junction region in the semiconductor substrate uncovered by the gate structures. The PMOS region is doped with fourth dopants for a p-junction region in the semiconductor substrate uncovered by the gate structures. Finally, a thermal process is performed to the semiconductor substrate to activate the first dopants, the second dopants, the third dopants, the fourth dopants.
Abstract:
The transistor structure in the present invention has a recessed region on the top surface of the semiconductor substrate. The transistor has a gate insulator within the recessed region and the gate insulator has a gate space within. A gate electrode is formed within and over the gate space. The transistor has a first insulator layer between the gate electrode and the semiconductor substrate. A semiconductor layer is formed over a portion of the semiconductor substrate uncovered by the gate insulator and the gate electrode. The transistor has a junction region with third type dopants. The junction region is located within the semiconductor substrate under a region uncovered by the gate insulator and the gate electrode. An extended junction region with first type dopants is also created. The extended junction region is located within the semiconductor substrate under the gate insulator. The transistor also has an anti-punchthrough region with second type dopants. The anti-punchthrough region is located within the semiconductor substrate under the gate electrode.
Abstract:
The present invention includes forming a pad oxide layer on a substrate. A silicon nitride layer is deposited on the pad oxide. Then, an etching process is used to etch the silicon nitride layer, pad oxide. Subsequently, a silicon oxynitride layer is formed on the substrate. An undoped polysilicon layer is deposited on the silicon nitride layer and silicon oxynitride layer. Subsequently, polysilicon side wall spacers are formed. Then, the silicon nitride layer is removed to expose the pad oxide. Then, a blanket ion implantation is carried out to implant dopant into the side wall spacers, and through the pad oxide or the silicon oxynitride layer into the substrate. An oxide layer is deposited on the polysilicon side wall spacers. Then, a chemical mechanical polishing (CMP) is performed for planarization. A further silicon oxynitride layer is grown at the top of the polysilicon side wall spacers. Next, a doped polysilicon layer is formed on the oxide, polysilicon side wall spacers as word line.
Abstract:
An ultra-short channel device with an inverse-T gate lightly-doped drain (ITLDD) structure is disclosed. The present invention includes a semiconductor substrate, which includes a top surface; a source region formed in the semiconductor substrate; and a drain region formed in the semiconductor substrate spaced from the source region by a channel region. Further, the present invention also includes an inverse-T shaped silicon region formed over the semiconductor substrate, wherein the inverse-T shaped silicon region is approximately disposed within the area of the channel region; and a sidewall insulating region abutting to a sidewall of the inverse-T shaped silicon region. A first conductive region is formed on the top surface of the inverse-T shaped silicon region, and a second conductive region is formed on the top surface of the source region. Also, a third conductive region is formed on the top surface of the drain region.
Abstract:
A new structure of a capacitor for a DRAM is disclosed herein. The structure of the capacitor includes a mushroom shape first storage node, a dielectric layer and a second storage node. The mushroom shape first storage node includes a base portion that is formed of polysilicon. A plurality of mushroom neck portions located on the base portion. A plurality of roof portions are connected on the tops of the mushroom neck portions. The dielectric layer is conformally covered the surface of the mushroom shape storage node. The second storage node encloses the surface of the dielectric layer. The formation of the mushroom shape capacitor includes forming a first conductive layer over a wafer. Then, an undoped hemispherical grains silicon (HSG-silicon) is formed on the first conductive layer. The HSG-silicon is separated along the grain boundaries to expose a portion of the first conductive layer. Next, the exposed first conductive layer is etched by using the HSG-silicon layer as a mask. A dielectric layer is then deposited on the exposed surface of the first conductive layers, and the HSG-silicon. A second conductive layer is formed over the dielectric layer.
Abstract:
A method for forming a double-crown shaped capacitor of a dynamic random access memory cell is disclosed. The method includes forming a first doped polysilicon layer (118) over a semiconductor substrate (110), wherein at least a portion of the first doped polysilicon layer communicates to the substrate. A silicon oxide layer (119) is formed on the first doped polysiliocn layer, followed by removing a portion of the silicon oxide layer. After forming a first silicon nitride spacer (122) on sidewall of the silicon oxide layer, a portion of the first doped polysihocn layer is etched using the first silicon nitride spacer as a mask, thereby forming a recessed cavity (124) in the first doped polysiliocn layer. The recessed cavity and a space surrounded by the first silicon nitride spacer are refilled with a second silicon nitride layer (126). Next, the second silicon oxide layer is removed using the first silicon nitride spacer and the second silicon nitride layer as a mask, and the first doped polysilicon layer is further removed using the first silicon nitride spacer and the second silicon nitride layer as an etch mask. After forming a second doped polysilicon spacer (128) on sidewalls of the first silicon nitride spacer and the first doped polysilicon layer, the second silicon nitride layer and the first silicon nitride spacer are removed. Finally, a dielectric layer (136) is formed on the first doped polysilicon layer and the second doped polysiliocn spacer, and a conductive layer (138) is then formed on the dielectric layer.