Abstract:
A system includes a heat exchanger, a first heat source disposed along a first circuit, and a second heat source disposed along a second circuit. The heat exchanger includes a first core defining a first flow path through the heat exchanger and along the first circuit and a second core defining a second flow path through the heat exchanger and along the second circuit that is parallel to the first flow path. The first and second cores define a third flow path extending through the heat exchanger that is configured to be in a heat exchange relationship with the first and second flow paths.
Abstract:
An electrical contactor assembly is provided including an electrical contactor positioned within a contactor housing, an electrical bus bar, and a post constructed from an electrically and thermally conductive material connected to the bus bar. At least one lead is coupled to the electrical contact and to the post. The at least one lead has a first portion oriented about a first plane and a second portion extending from the first portion and being oriented about a second plane. The second plane is arranged at an angle to the first plane such that one or more surface of the at least one lead are configured to transmit heat to the contactor housing.
Abstract:
A cold plate assembly is provided having a base defining a cooling channel and a heat exchanger friction-stir welded to the base, wherein the heat exchanger is located within a portion of the cooling channel, and the friction-stir welding between the heat exchanger and the base forms a fluid seal.
Abstract:
A contactor mounting system is disclosed herein. The contactor is directly mounted to the printed wire board. Pins may be coupled to an exposed end portion of the first stationary lead and the second stationary lead of the contactor. Pins may be configured to interconnect the contactor to the printed wire board.
Abstract:
An electric motor system includes a motor housing and a stator core disposed within the motor housing. The stator core includes a back iron heat exchanger for passing fluid therethrough. A fluid inlet is disposed at a first portion of the back iron heat exchanger that is at least partially in fluid communication with a liquid coolant source and is configured to accept a cooling mixture. A fluid outlet is disposed at a second portion of the back iron heat exchanger for outletting a gas coolant from the back iron heat exchanger such that liquid coolant is convertible to the gas coolant in the back iron heat exchanger by receiving energy from the stator core allowing the gas coolant exit through the outlet and thereby removing heat from the stator core.
Abstract:
A contactor interconnect includes a lead post, a bus bar post and a plurality of electrically conductive heat rejection components. The lead post electrically connects to the bus bar post in series through the plurality of heat rejection components. The heat rejection components in turn connect electrically in parallel with one another between the lead post and the bus bar post for conducting current between the posts and passively dissipating heat conveyed from the lead post toward the bus bar post.
Abstract:
An inductor assembly includes an inductor core, a winding, and a coolant conduit. The inductor core defines a cavity and the winding is disposed about the inductor core such that a portion of the winding is disposed within the cavity. The coolant conduit extends from a first end of the cavity towards an opposed second end of the cavity and includes an inlet port and an outlet port in fluid communication with each other through the coolant conduit.
Abstract:
An electrical power distribution system for a mobile platform, and a method for making such, includes a forming a substrate having a first panel connected to a second panel. The first panel resides in a first plane that differs from a second plan in which the second panel resides. One or more bus bars are arranged on the first panel, with one or more power electronic devices arranged on the first panel and connected to the one or more bus bars. One or more connectors are arranged on the second panel and electrically connected to the one or more bus bars. Finally, one or more thermal relief devices are arranged in contact with the substrate.
Abstract:
A fuse assembly of a motor controller is provided. The fuse assembly includes a base, a base plate to which the base is attached, a lead frame that is attached to the base, at least one lead that is attached to the lead frame, and a fuse element attached to the base and covered with a fusible material. Heat is generated in the fuse element by a high flow of current carried by the assembly. The heat is operatively transferred through the assembly by direct conduction to the base and then base plate. The assembly sufficiently transfers heat to reduce rise in temperature of and properly cool the assembly. An operating temperature of the assembly is reduced to minimize or prevent damage thereto. The assembly has increased thermal-fatigue life and minimizes thermal-fatigue damage to the assembly during temperature cycling in an aircraft. Thermal stress of the assembly is minimized.
Abstract:
A flexible laminated thermocouple is provided and includes layers of insulation material. At least one of the layers has a longitudinal axis and includes thermocouple conductors formed of differing electrically conductive materials. Each of the thermocouple conductors includes a main section extending along the longitudinal axis and a flange extending transversely to the longitudinal axis. The main sections are insulated from one another and the thermocouple conductors are insulated from thermocouple conductors of another layer.