Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a Single Carrier (SC) Space Time Block Coding (STBC) transmission. For example, a station may generate a plurality of space-time streams including at least a first space-time stream and a second space-time stream, the first space-time stream including, in a first interval, a first data sequence followed by a first Guard Interval (GI) sequence, the second space-time stream including, in the first interval, a second data sequence followed by a second GI sequence, the first space time stream comprising, in a second interval subsequent to the first interval, a sign-inverted and time-inverted complex conjugate of the second data sequence followed by the first GI sequence, the second stream including, in the second interval, a time-inverted complex conjugate of the first data sequence followed by the second GI sequence; and transmit a SC STBC transmission based on the plurality of space-time streams.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of multi-user (MU) wireless communication. For example, a wireless station may generate a MU Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU) including a header field and a plurality of Spatial Streams (SSs) of Media Access Control (MAC) Protocol Data Units (MPDUs) to a plurality of users, the header field including an indication of a plurality of modulation schemes corresponding to respective ones of the plurality of users; and process transmission of the MU PPDU to the plurality of users over a wireless communication band.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of multi-user (MU) wireless communication. For example, a wireless station may generate a MU Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU) including a header field and a plurality of Spatial Streams (SSs) of Media Access Control (MAC) Protocol Data Units (MPDUs) to a plurality of users, the header field including an indication of a plurality of modulation schemes corresponding to respective ones of the plurality of users; and process transmission of the MU PPDU to the plurality of users over a wireless communication band.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wireless communication frame. For example, a wireless station may generate a frame including a header portion, the header portion including a legacy header, followed by a first non-legacy header, the header portion including a first indication to indicate whether or not the header portion is to include a second non-legacy header following the first non-legacy header, the header portion including a second indication to indicate whether or not channel bonding is to be used; and process transmission of the frame to at least one second wireless station over a directional wireless communication band.
Abstract:
Embodiments of a method for managing a multi-band Wi-Fi Direct Services session are generally described herein. In some embodiments, the method negotiates the session with a wireless communication station over a first frequency hand. The negotiation includes transmitting application programming interface (API) parameters to the wireless communication station that includes parameters for a second frequency band and a channel associated with the second frequency band.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating control information in a Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU). For example, an apparatus may include logic and circuitry configured to cause a wireless station to generate a PPDU comprising a header field, a payload after the header field, and a control trailer after the payload, the control trailer comprising control information, the header field indicating presence of the control trailer; and to transmit the PPDU over a directional wireless communication band.
Abstract:
Systems and methods for frame addressing in DL MU-MIMO transmissions are described. In some embodiments, identifier information identifying receiving devices for a frame may be included in a header of that frame. In various embodiments, the identifier information may include a concatenation of respective identifiers for each of the plurality of receiving devices. In some other embodiments, the identifiers may include information identifying a pre-defined device group including several receiving devices. In some embodiments, the frame may include a medium access control (MAC) frame transmitted by an access point/personal basic service set control point (PCP/AP), and the recipient devices may include non-AP/non-PCP stations (STAs). In some such embodiments, a receiving STA address (RA) field or transmitting STA address (TA) field in a MAC header of the MAC frame may be used as a container for the recipient identifier information.
Abstract:
Techniques to enable dynamic bandwidth management at the physical layer level while maintaining backwards compatibility in wireless systems is provided. Furthermore, techniques for reducing the occurrence of exposed nodes are provided. A transmitter may transmit a frame including an indication that a PHY layer sub-header defining a bandwidth associated with a channel is present. Furthermore, the transmitter may transmit a third frame after receiving a second frame from a receiver to indicate to legacy stations that the TXOP was successful.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of wireless transmission over a bonded channel. For example, a wireless station may be configured to determine a Clear Channel Assessment (CCA) busy state of a secondary channel in a directional wireless communication band upon detecting transmission of a first packet over the secondary channel; to determine a CCA idle state of the secondary channel upon detecting transmission of a second packet indicating an end of a transmission sequence including the first packet; and to process transmission of a wireless transmission over a bonded channel including a primary channel and the secondary channel, if the CCA state of the secondary channel and a CCA state of the primary channel are idle during at least a back-off and an InterFrame Space (IFS).
Abstract translation:一些演示实施例包括通过绑定信道的无线传输的装置,装置,系统和方法。 例如,无线站可以被配置为在检测到辅助信道上的第一分组的传输时,确定定向无线通信频带中的辅助信道的清除信道评估(CCA)忙状态; 在检测到指示包括第一分组的传输序列的结束的第二分组的传输时,确定辅助信道的CCA空闲状态; 并且如果辅助信道的CCA状态和主信道的CCA状态在至少回退期间是空闲的,则处理通过包括主信道和辅信道的绑定信道的无线传输的传输,并且InterFrame Space (IFS)。
Abstract:
The disclosure relates to a method, system and apparatus for extending Bluetooth low energy (BLE) technology to conserve energy in multi-mode wireless devices. In one embodiment, the disclosure relates to a device comprising a first module configured for radio communication at a non-BLE communication mode; a second module to communicate at a BLE communication mode; and a controller for controlling the first and the second communication modules, the controller configured to direct the BLE communication mode to at least one of advertise or scan for information relating to the non-BLE communication mode.