Abstract:
Polyhexahydrotriazine (PHT) and polyhemiaminal (PHA) materials form highly cross-linked polymers which can be used as binder resins in composite materials. A filler element functionalized with a primary amine group can be covalently bonded to the PHA/PHT polymer resins. Example filler elements include, without limitation, carbon nanotubes, silica materials, carbon and glass fibers, and nanoparticles. Filler materials are incorporated into polymeric materials to improve the mechanical strength or other characteristics of the polymeric material for various applications. Typical composite materials use thermosetting materials that, once set, are intractable. PHT and PHA materials can be reverted to starting materials by exposure to acids. Thus, composite components formed using these materials are recyclable.
Abstract:
A method of fabricating a liquid-cooled heat sink assembly, including: providing a heat transfer element including a heat transfer base having opposite first and second sides, and a plurality of thermally conductive fins extending from the first side of the heat transfer base, the second side of the heat transfer base to couple to a component(s) to be cooled; providing a coolant-carrying structure including a coolant-carrying base and a coolant-carrying compartment through which liquid coolant flows, the coolant-carrying base including a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins of the heat sink base to extend through; and attaching the heat transfer element and coolant-carrying structure together with the plurality of thermally conductive fins extending through the fin-receiving openings in the coolant-carrying base into the coolant-carrying compartment.
Abstract:
Materials which react with (“scavenge”) sulfur compounds, such as hydrogen sulfide and mercaptans, are useful for limiting sulfur-induced corrosion. Surface-modified particles incorporating a hexahydrotriazine moiety are disclosed and used as sulfur scavengers. These surface-modified particles are used a filter media in fixed filter systems and as additives to fluids including sulfur compounds. The hexahydrotriazine moiety can react with sulfur compounds in such a manner as to bind sulfur atoms to the surface-modified particles, thus allowing removal of the sulfur atoms from fluids such as crude oil, natural gas, hydrocarbon combustion exhaust gases, sulfur polluted air and water. The surface-modified particles may, in general, be sized to allow separation of the particles from the process fluid by sedimentation, size-exclusion filtration or the like.
Abstract:
Method for preparing a supramolecular therapeutic agent delivery assembly are provided. A carbonate-containing precursor, a functionalized aliphatic precursor, and an aromatic diamine precursor may be combined to form an amphiphilic block co-polymer. The block co-polymer undergo a cross-linking polymerization process and a therapeutic agent may be incorporated into the resulting supramolecular assembly. The supramolecular assembly may comprise HT, PHT, HA, and/or PHA materials.
Abstract:
A coating for an article may be made by applying a powder of a polyhemiaminal (PHA) polymer material to the article in a particulate form and then converting the PHA polymer material to a polyhexahydrotriazine (PHT) polymer material and fusing the particles into a monolithic coating by applying heat to the particles. The method generally includes forming a dilute reaction mixture comprising a formaldehyde reactant, a solvent, a primary aromatic diamine, and heating the reaction mixture to a temperature of between about 20° C. and about 120° C. for a short time to form a polymer. A particulate solid is precipitated by adding an excess volume of a non-solvent to the mixture. The powder may be applied to an article and then heated to fuse the powder into a coating and convert the PHA to PHT.
Abstract:
Synthetic schemes for preparation of polymers and polymer precursors having various functional groups is provided. These synthetic schemes are used to prepare polymeric, oligomeric, or monomeric materials incorporating 1,3,5-hexahydrotriazine moieties. These hexandortriazine moieties can be further reacted to form dithiazine and thioether moieties. In certain synthetic schemes, 1,3,5-hexahydrotriazine moieties are incorporated as crosslinker groups for providing crosslinked polymeric materials. Crosslinker groups formed with these triazine moieties provide chemically reversible crosslinks, which allow such otherwise intractable crosslinked polymeric materials to be recycled and/or reprocessed by removal/reversal of crosslinks.
Abstract:
Hexahydrotriazine (HT) materials and hemiaminal (HA) materials derived from aromatic, aliphatic, and/or polyether diamines may he used as a platform for creating flame retardant materials. Various flame retardant material precursors may he incorporated into the HA and HT materials. Examples of flame retardant precursors may include organohalogen materials, organophosphorous materials, malamines, and dianiline compounds, among others. The flame retardant materials and precursors may he single molecule species, oligomers, and/or polymers (i.e., polyhexahydrotriazine, PHT, polyhemiaminal, PHA). The flame retardant materials may he made using an aromatic diamine, an aliphatic diamine, a polyether diamine, or a mixture thereof to react with an aldehyde (i.e. formaldehyde or paraformaldehyde). Such flame retardant material precursors will complex with the diamine monomers via a copolymerization reaction to form the flame retardant materials.
Abstract:
Polyhexahydrotriazine (PHT) and polyhemiaminal (PHA) materials chemically modified to include thermoplastic polymer bridging groups, and methods of making such materials, are disclosed. The materials are formed by a process that includes heating a mixture comprising i) a solvent, ii) paraformaldehyde, iii) a diamine monomer comprising two primary aromatic amine groups, and iv) a polymer diamine at a temperature of about 20° C. to less than 150° C. This heating step forms a stable PHA in solution, which can be isolated. The PHA includes covalently bonded thermoplastic polymer groups. The PHA is then heated at a temperature of 150° C. to about 280° C., thereby converting the PHA material to a PHT material that includes covalently bonded thermoplastic polymer groups.
Abstract:
Polysulfones and methods for forming polysulfones are disclosed herein. The polysulfones are prepared from thiols and hexahydrotriazines. The thiols may be, for example, dithiols, trithiols, monothiols, or mixtures thereof. The thiols and hexahydrotriazines may be polymerized to form a polythioether. The polythioether may thereafter be oxidized to form a polysulfone. The polysulfones are prepared from an efficient and simple synthetic method, and the properties of the prepared polysulfones can be readily tuned. The prepared polysulfones may have improved thermal properties, improved mechanical properties, and enhanced functionality.
Abstract:
Polythioethers and methods for forming polythioethers are disclosed herein. The polythioethers are prepared from thiols and hexahydrotriazines. The thiols may be, for example, dithiols, trithiols, monothiols, or mixtures thereof. The polythioethers are prepared from an efficient and simple synthetic method, and the properties of the prepared polythioethers can be readily tuned. The prepared polythioethers may additionally have improved thermal properties, improved mechanical properties, and enhanced functionality.