Abstract:
Described embodiments relate to improved methods and systems for computationally efficient optimization of radiation dose delivery. The optimization involves determining an improved form of objective function to be used for mapping radiotherapy beams to a patient body volume having at least one target volume and at least one non-target volume. The objective function has a first term related to the at least one target volume and a second term related to the at least one non-target volume. The optimization further involves determining a minimum of the objective function, whereby beams, comprising a plurality of beamlets, mapped to pass through the at least one non-target volume, comprising a plurality of non-target volume portions, are limited such that the second term is zero only if, a product of the intensity of a beamlet mapped to pass through a non-target volume portion and the dose deposited by said beamlet is equal to a first predetermined average dose constraint value for the respective non-target volume portion, for all beamlets mapped to pass through the at least one non-target volume. This limit aims to reduce the occurrence of negative beam weights, thereby facilitating computationally efficient determination of the minimum of the objective function and achieving more physically realistic beamlet intensities. In another embodiment, the objective function has a smoothing term for biasing the intensity of beamlets, for a respective beam mapped to pass through the at least one target volume and the at least non-target volume, towards a uniform distribution within the respective beam. Following the optimization, radiotherapy is delivered based on the determined minimum of the objective function.
Abstract:
The invention relates to improved methods and systems for computationally efficient optimization of radiation dose delivery. The optimization involves determining an improved form of objective function to be used for mapping radiotherapy beams to a patient body volume having at least one target volume and at least one non-target volume. The objective function has a first term related to the at least one target volume and a second term related to the at least one non-target volume. The optimization further involves determining a minimum of the objective function, whereby beams mapped so as to pass through the at least one non-target volume are limited such that the second term is zero only if the weights of beamlets passing through the at least one non-target volume are zero. This limit helps to avoid the occurrence of negative beam weights, thereby facilitating computationally efficient determination of the minimum of the objective function using matrix inversion. Following the optimization, radiotherapy is delivered based on the determined minimum of the objective function.
Abstract:
Substituted aryl 1,4-pyrazine derivatives and their use in treating anxiety disorders, depression and stress related disorders are disclosed.
Abstract:
A special BIOS includes a program application manager (PAM) and a file system structure (FSS) that points to addresses on a mass storage device (MSD) for an application and at least one presentation playable by the application. The BIOS calls the PAM on startup, and the PAM checks for an application, and finding same loads and executes the application before loading the operating system (OS). In a preferred embodiment the FSS is programmable, and the system after OS boot is started checks MSD devices for new FSS parameters, and finding same loads the parameters to the programmable FSS of the BIOS. In some embodiments parameters may cause presentations and associated applications to be accessed and executed in a rotating or serial order. In other embodiments the BIOS represents its own address space in RAM to the OS at OS boot to include the application, enabling the application to continue to execute during OS boot. In further embodiments a special driver is executed after OS boot to bind the application into the OS configuration so the application may continue to operate in a stable manner.
Abstract:
A dry powder inhaler has a slider for incrementally advancing a blister disk, to provide successive doses of a dry powder pharmaceutical. A blister disk is rotatably supported on a spindle on a deck plate of the inhaler. A powder port, an advancing slot, and a lifter slot extend through the deck plate. A slider is attached to the deck plate and movable between open and closed positions. As the slider is opened, a litter moves up on a ramp on the slider to shear open a blister, so that the blister contents can be mixed with air and inhaled. As the slider is moved back to the closed position, the lifter is withdrawn and an advancing finger turns the disk to bring the next blister into position for opening to provide the next dose to the patient.
Abstract:
A circuit board latching device (40, 41) for use with an insulative connector housing (31) includes a retaining wall (82) and a circuit board support post (52) in which the board support post (52) is positioned opposite the retaining wall (82). The latching device (40, 41) of the present invention comprises a main body portion (56) and a mounting mechanism for mounting the main body portion to the housing (31) between the retaining wall (82) and the board support post (52). Furthermore, a latch lug (71) extends from the main body portion (56) which includes a cam surface (72) which is inclined relative to the latch lug (71), and a lock surface (73) which is substantially perpendicular to the main body portion (56). Moreover, the latching device (40, 41) includes a resilient stress reducing arm (79) projecting angularly away from the main body portion (56) toward the retaining wall (82). In one aspect, the mounting mechanism comprises a mounting platform (94) which includes a plate (106) extending from the main body portion (56). A first finger (95) extends substantially downward from one end of the plate (106) while a second finger (96) extends substantially downward from the opposite end of the plate (106) which mountingly engage the housing (31). In another aspect of the present invention, the mounting mechanism comprises an upstanding sleeve (59) mounting member extending from the main body portion (56).
Abstract:
A door lock has a lock latch, a first locking mechanism and a second locking mechanism. The first locking mechanism and the second locking mechanism can be relatively screwed and assembled with the lock latch. When the second locking mechanism is assembled relative to the first locking mechanism, the upper guide rail and the lower guide rails of the lower guide plate of the second locking mechanism are respectively embedded in the upper guide groove and the lower guide grooves of the first locking mechanism, and the internal thread portion of the second locking mechanism is relatively threaded with the external thread portion of the first locking mechanism. In addition, with the design of the internal thread portion and the external thread portion having the inner shaft moving surface and the outer shaft moving surface, respectively, the speed of threaded movement is faster when they are threaded together.
Abstract:
A control structure of a door lock contains: a body, a slide plate, a clutch assembly, a head, a clutch assembly, and a guider. The body includes a chamber, a receiving groove, a motor, a drive gear, a trench, and a resilient element. The slide plate includes a holder, a trough, a lever, a lock cylinder, and a first connection orifice. The clutch assembly is received in the slide plate and includes a first annular ring, a second annular ring, and a third annular ring. The second annular ring includes two first cutouts, two second cutouts, and two recessed portions. The head includes a defining groove, a second connection orifice, and two bosses. The guider rotatably is fixed in the chamber and includes a space and at least two spiral indentations formed on an outer wall of the guider.
Abstract:
A control structure of a door lock contains: a body, a slidable partition, a motor, a slide cylinder, a deadbolt, a latch, a first resilient element, and a second resilient element. The body includes a first cap, a second cap, an open segment, a close segment, a drive space, a holder, a groove, and an abutting post. The slidable partition is accommodated in the body and includes a slot, two spaced first driving extensions, a second driving extension, a through hole, two symmetrical hooks, and a seat. The motor is accommodated in the holder. The slide cylinder is received in the drive space. The deadbolt is movably received in the opening. The latch is accommodated in the notch. The first resilient element is positioned on the second positioning segment and the first positioning segment. The second resilient element is positioned on the first locating protrusion.