摘要:
Described embodiments relate to improved methods and systems for computationally efficient optimization of radiation dose delivery. The optimization involves determining an improved form of objective function to be used for mapping radiotherapy beams to a patient body volume having at least one target volume and at least one non-target volume. The objective function has a first term related to the at least one target volume and a second term related to the at least one non-target volume. The optimization further involves determining a minimum of the objective function, whereby beams, comprising a plurality of beamlets, mapped to pass through the at least one non-target volume, comprising a plurality of non-target volume portions, are limited such that the second term is zero only if, a product of the intensity of a beamlet mapped to pass through a non-target volume portion and the dose deposited by said beamlet is equal to a first predetermined average dose constraint value for the respective non-target volume portion, for all beamlets mapped to pass through the at least one non-target volume. This limit aims to reduce the occurrence of negative beam weights, thereby facilitating computationally efficient determination of the minimum of the objective function and achieving more physically realistic beamlet intensities. In another embodiment, the objective function has a smoothing term for biasing the intensity of beamlets, for a respective beam mapped to pass through the at least one target volume and the at least non-target volume, towards a uniform distribution within the respective beam. Following the optimization, radiotherapy is delivered based on the determined minimum of the objective function.
摘要:
The invention relates to improved methods and systems for computationally efficient optimization of radiation dose delivery. The optimization involves determining an improved form of objective function to be used for mapping radiotherapy beams to a patient body volume having at least one target volume and at least one non-target volume. The objective function has a first term related to the at least one target volume and a second term related to the at least one non-target volume. The optimization further involves determining a minimum of the objective function, whereby beams mapped so as to pass through the at least one non-target volume are limited such that the second term is zero only if the weights of beamlets passing through the at least one non-target volume are zero. This limit helps to avoid the occurrence of negative beam weights, thereby facilitating computationally efficient determination of the minimum of the objective function using matrix inversion. Following the optimization, radiotherapy is delivered based on the determined minimum of the objective function.
摘要:
The invention relates to a humanized anti-B7-2 antibody that comprises a variable region of nonhuman origin and at least a portion of an immunoglobulin of human origin. The invention also pertains to methods of treatment for various autoimmune diseases, transplant rejection, inflammatory disorders and infectious diseases by administering humanized anti-B7-2 and/or anti-B7-1 antibodies.
摘要:
Polynucleotides encoding human CTLA-8 (now known as IL-17F) and related proteins are disclosed. Human CTLA-8 and related proteins, including anti-human IL-17F antibodies, and methods for their production are also disclosed. Methods of treatment using human CTLA-8 and related proteins, rat CTLA-8 proteins and herpes CTLA-8 proteins are also provided.
摘要:
The invention relates to humanized anti-B7-2 and anti-B7-1 antibodies, wherein each comprise a variable region of non-human origin and at least a portion of an immunoglobulin of human origin. The invention also pertains to methods of treatment for various autoimmune diseases, transplant rejection, inflammatory disorders and infectious diseases by administering humanized anti-B7-2 and/or anti-B7-1 antibodies.
摘要:
The invention relates to a humanized anti-B7-2 antibody that comprises a variable region of nonhuman origin and at least a portion of an immunoglobulin of human origin. The invention also pertains to methods of treatment for various autoimmune diseases, transplant rejection, inflammatory disorders and infectious diseases by administering humanized anti-B7-2 and/or anti-B7-1 antibodies.
摘要:
Method of treating autoimmune conditions are disclosed comprising administering to a mammalian subject IL-12 or an IL-12 antagonist. In certain preferred embodiments the autoimmune condition is one which is promoted by an increase in levels of IFN-γ or TNF-α. Suitable conditions for treatment include multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes melitis and autoimmune inflammatory eye disease.
摘要:
Method of treating autoimmune conditions are disclosed comprising administering to a mammalian subject IL-12 or an IL-12 antagonist. In certain preferred embodiments the autoimmune condition is one which is promoted by an increase in levels of IFN-γ or TNF-α. Suitable conditions for treatment include multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes melitis and autoimmune inflammatory eye disease.
摘要:
The invention relates to humanized anti-B7-2 and anti-B7-1 antibodies, wherein each comprise a variable region of non-human origin and at least a portion of an immunoglobulin of human origin. The invention also pertains to methods of treatment for various autoimmune diseases, transplant rejection, inflammatory disorders and infectious diseases by administering humanized anti-B7-2 and/or anti-B7-1 antibodies.
摘要:
Method of treating autoimmune conditions are disclosed comprising administering to a mammalian subject IL-12 or an IL-12 antagonist. In certain preferred embodiments the autoimmune condition is one which is promoted by an increase in levels of IFN-&ggr; or TNF-&agr;. Suitable conditions for treatment include multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes melitis and autoimmune inflammatory eye disease.