摘要:
An array of fully isolated multi-junction complimentary metal-oxide-semiconductor (CMOS) filterless color imager cells is provided, together with an associated fabrication method. The method provides a bulk silicon (Si) substrate. A plurality of color imager cells are formed, either in the Si substrate, or in a single epitaxial Si layer formed over the substrate. Each color imager cell includes a photodiode set with a first, second, and third photodiode formed as a stacked multi-junction structure. A U-shaped (in cross-section) well liner, fully isolates the photodiode set from adjacent photodiode sets in the array. For example, each photodiode is formed from a p doped Si layer physically interfaced to a first wall. A well bottom physically interfaces to the first wall, and the p doped Si layer of the third, bottom-most, photodiode is part of the well bottom. Then, the photodiode sets may be formed from an n/p/n/p/n/p or n/p/p−/p/p−/p layered structure.
摘要翻译:提供了完全隔离的多结互补金属氧化物半导体(CMOS)无滤膜彩色成像器单元的阵列,以及相关的制造方法。 该方法提供体硅(Si)衬底。 在Si衬底中或在衬底上形成的单个外延Si层中形成多个彩色成像器单元。 每个彩色成像器单元包括具有形成为堆叠多结结构的第一,第二和第三光电二极管。 U形(横截面)井衬管,将阵列中的光电二极管组与相邻的光电二极管组完全隔离。 例如,每个光电二极管由物理上与第一壁物理连接的p掺杂Si层形成。 阱底部与第一壁物理接口,第三,最底部的光电二极管的p掺杂Si层是阱底部的一部分。 然后,光电二极管组可以由n / p / n / p / n / p或n / p / p / p / p / p层叠结构形成。
摘要:
An array of fully isolated multi-junction complimentary metal-oxide-semiconductor (CMOS) filterless color imager cells is provided, with a corresponding fabrication process. The color imager cell array is formed from a bulk silicon (Si) substrate without an overlying epitaxial Si layer. A plurality of color imager cells are formed in the bulk Si substrate, where each color imager cell includes a photodiode set and a U-shaped well liner. The photodiode set includes first, second, and third photodiode formed as a stacked multifunction structure, while the U-shaped well liner fully isolates the photodiode set from adjacent photodiode sets in the array. The U-shaped well liner includes a physically interfacing doped well liner bottom and first wall. The well liner bottom is interposed between the substrate and the photodiode set, and the first wall physically interfaces each doped layer of each photodiode in the photodiode set.
摘要:
A floating body germanium (Ge) phototransistor with a photo absorption threshold bias region, and an associated fabrication process are presented. The method includes: providing a p-doped Silicon (Si) substrate; selectively forming an insulator layer overlying a first surface of the Si substrate; forming an epitaxial Ge layer overlying the insulator layer; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers; forming source/drain (S/D) regions in the Ge layer; and, forming a photo absorption threshold bias region in the Ge layer, adjacent the channel region. In one aspect, the second S/D region has a length, longer than the first S/D length. The photo absorption threshold bias region underlies the second S/D region. Alternately, the second S/D region is separated from the channel by an offset, and the photo absorption threshold bias region is the offset in the Ge layer, after a light p-doping.
摘要:
A method of fabricating a silicon-germanium CMOS includes preparing a silicon substrate wafer; depositing an insulating layer on the silicon substrate wafer; patterning and etching the insulating layer; depositing a layer of polycrystalline germanium on the insulating layer and on at least a portion of the silicon substrate wafer; patterning and etching the polycrystalline germanium; encapsulating the polycrystalline germanium with an insulating material; rapidly thermally annealing the wafer at a temperature sufficient to melt the polycrystalline germanium; cooling the wafer to promote liquid phase epitaxy of the polycrystalline germanium, thereby forming a single crystal germanium layer; and completing the CMOS device.
摘要:
A method of fabricating a germanium infrared sensor for a CMOS imager includes preparation a donor wafer, including: ion implantation into a silicon wafer to form a P+ silicon layer; growing an epitaxial germanium layer on the P+ silicon layer, forming a silicon-germanium interface; cyclic annealing; and implanting hydrogen ions to a depth at least as deep as the P+ silicon layer to form a defect layer; preparing a handling wafer, including: fabricating a CMOS integrated circuit on a silicon substrate; depositing a layer of refractory metal; treating the surfaces of the donor wafer and the handling wafer for bonding; bonding the handling wafer and the donor wafer to form a bonded structure; splitting the bonded structure along the defect layer; depositing a layer of indium tin oxide on the germanium layer; completing the IR sensor.
摘要:
A method of forming a silicon-germanium layer on an insulator includes depositing a layer of silicon-germanium on a silicon substrate to form a silicon/silicon-germanium portion; implanting hydrogen ions into the silicon substrate between about 500 Å to 1 μm below a silicon-germanium/silicon interface; bonding the silicon/silicon-germanium portion to an insulator substrate to form a couplet; thermally annealing the couplet in a first thermal annealing step to split the couplet; patterning and etching the silicon-germanium-on-insulator portion to remove portions of the silicon and SiGe layers; etching the silicon-germanium-on-insulator portion to remove the remaining silicon layer; thermally annealing the silicon-germanium-on-insulator portion in a second annealing step to relaxed the SiGe layer; and depositing a layer of strained silicon about the SiGe layer.
摘要:
A device and associated method are provided for fabricating a liquid phase epitaxial (LPE) Germanium-on-Insulator (GOI) photodiode with buried high resistivity Germanium (Ge) layer. The method provides a silicon (Si) substrate, and forms a bottom insulator overlying the Si substrate with a Si seed access area. Then, a Ge P-I-N diode is formed with an n +-doped (n+) mesa, a p+-doped (p+) Ge bottom insulator interface and mesa lateral interface, and a high resistivity Ge layer interposed between the p+ Ge and n+ Ge. A metal electrode is formed overlying a region of the p+ Ge lateral interface, and a transparent electrode is formed overlying the n+ Ge mesa. In one aspect, the method deposits a silicon nitride layer temporary cap overlying the high resistivity Ge layer, and an annealing is performed to epitaxially crystallize the Ge bottom interface and high resistivity Ge layer.
摘要:
A method of fabricating a low, dark-current germanium-on-silicon PIN photo detector includes preparing a P-type silicon wafer; implanting the P-type silicon wafer with boron ions; activating the boron ions to form a P+ region on the silicon wafer; forming a boron-doped germanium layer on the P+ silicon surface; depositing an intrinsic germanium layer on the born-doped germanium layer; cyclic annealing, including a relatively high temperature first anneal step and a relatively low temperature second anneal step; repeating the first and second anneal steps for about twenty cycles, thereby forcing crystal defects to the P+ germanium layer; implanting ions in the surface of germanium layer to form an N+ germanium surface layer and a PIN diode; activating the N+ germanium surface layer by thermal anneal; and completing device according to known techniques to form a low dark-current germanium-on-silicon PIN photodetector.
摘要:
A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.
摘要:
Provided are a SiGe vertical optical path and a method for selectively forming a SiGe optical path normal structure for IR photodetection. The method comprises: forming a Si substrate surface; forming a Si feature, normal with respect to the Si substrate surface, such as a trench, via, or pillar; and, selectively forming a SiGe optical path overlying the Si normal feature. In some aspects, the Si substrate surface is formed a first plane and the Si normal feature has walls (sidewalls), normal with respect to the Si substrate surface, and a surface in a second plane, parallel to the first plane. Then, selectively forming a SiGe optical path overlying the Si normal feature includes forming a SiGe vertical optical path overlying the normal feature walls.