Abstract:
A method is provided for controlling transmission powers by a communication apparatus in a wireless communication system supporting a plurality of component carriers. When a sounding reference symbol (SRS) transmission overlaps with a physical uplink control channel (PUCCH) transmission in a time domain, the communication apparatus checks as to whether a total of a PUCCH transmission power for the PUCCH transmission on a first component carrier and a SRS transmission power for the SRS transmission on a second component carrier exceeds a maximum transmission power configured for the communication apparatus. The SRS transmission is dropped by the communication apparatus if the total of the PUCCH transmission power and the SRS transmission power exceeds the maximum transmission power configured for the communication apparatus.
Abstract:
The present invention provides for applying a cyclic redundancy check (CRC) to a data signal. The present invention includes attaching a first CRC to a first data signal block having a first length, segmenting the first data signal block attached with the first CRC into a plurality of second data signal blocks having a length shorter than the first length, respectively generating a second CRC for each second data signal block, and attaching the generated second CRC to the respective second data signal block. Moreover, the first CRC and second CRC may be generated from respectively different CRC generating polynomial equations.
Abstract:
A method of allocating radio resources in a multi-carrier system is disclosed, by which a signaling message can be efficiently transmitted according to necessity of a user equipment. In a user equipment of a mobile communication system transceiving data using a plurality of subcarriers, the present invention includes the steps of if the signaling message to be transmitted is generated in the user equipment, generating a preamble sequence according to a user equipment identifier to identify the user equipment, transmitting a preamble signal including the preamble sequence and the signaling message to a base station, and receiving an acknowledgement signal for the preamble signal generated according to the user equipment identifier.
Abstract:
A method of transmitting a sounding reference signal (SRS) in a wireless communication system is discussed. The method according to one embodiment includes receiving a first UE-specific configuration indicating possible subframes for aperiodic SRS transmission via a radio resource control (RRC) signaling, wherein the possible subframes are periodically configured; receiving a physical downlink control channel (PDCCH) signal including request information of requesting aperiodic SRS transmission; and transmitting at least one SRS one time in response to the request information within the possible subframes.
Abstract:
A method for generating a channel quality indicator (CQI) in a mobile communication system is presented. The method includes grouping a number of subcarriers to form at least one channel quality indicator subband for generating a channel quality indicator, and generating a channel quality indicator in each channel quality indicator subband, wherein a size of each channel quality indicator subband is dependent on a system bandwidth value and is an integer multiple of a downlink frequency resource unit size, wherein the downlink frequency resource unit size is prescribed according to the system bandwidth value.
Abstract:
A method of transmitting scheduling information in time-division-duplex (TDD) system is provided. The method comprises configuring a radio frame, the radio frame comprising at least one downlink subframe and at least one uplink subframe, wherein a downlink subframe is reserved for downlink transmission and an uplink subframe is reserved for uplink transmission, and transmitting scheduling information on a downlink control channel in a downlink subframe, the scheduling information comprising an uplink indicator and uplink resource assignment, the uplink indicator indicating which at least one uplink subframe the uplink resource assignment is valid for. Data can be efficiently transmitted by using an uplink indicator which indicates a specific location of a subframe.
Abstract:
A method for receiving Acknowledgement/Negative acknowledgement (ACK/NACK) information in a mobile communication system includes receiving a first signal including first spread ACK/NACK information and second spread ACK/NACK information from a first antenna set of a transmitting end in an orthogonal frequency division multiplexing (OFDM) symbol; receiving a second signal including third spread ACK/NACK information and fourth spread ACK/NACK information from a second antenna set of the transmitting end in an OFDM symbol; and de-spreading at least the first and third spread ACK/NACK information or the second and fourth spread ACK/NACK information for identifying the ACK/NACK information.
Abstract:
A method for transmitting a downlink signal in a wireless mobile communication system. The method according to one embodiment includes generating a resource indication value (RIV) indicating a start index (S) of consecutive virtual resource blocks (VRBs) and a length (L) of the consecutive VRBs; transmitting downlink control information including resource block allocation information. The downlink control information is common information for plural users, and the resource block allocation information includes the RIV. The method according to the embodiment further includes transmitting the downlink signal on the consecutive VRBs. If Y−1≦└X/2┘, then the RIV is defined by RIV=X(Y−1)+Z, else the RIV is defined by RIV=X(X−Y+1)+(X−1−Z), where X=└NVRB/G┘, Y=L/G, and Z=S/G, in which, L is the length of the consecutive VRBs, S is the start index of the consecutive VRBs, NVRB is the number of VRBs, L is a multiple of G, S is a multiple of G, and G is an integer of 2 or higher.
Abstract:
A method for transmitting channel quality information based on a differential scheme is disclosed. When channel quality information of a predetermined number of sub-bands selected by a receiver in a frequency selective channel is transmitted, total average channel information is transmitted. Channel information of the selected sub-bands is transmitted as sub-band differential information associated with average channel information. In this case, the sub-band differential information may be denoted by a specific value contained in a differential-value range including only positive (+) values. If at least two channel quality information is transmitted by a MIMO system, channel quality information of one channel is transmitted, then channel quality information of the other channel is transmitted as spatial differential information. In this case, the spatial differential information is denoted by a specific value contained in a differential-value range asymmetrical on the basis of “0”.
Abstract:
A method for receiving a Relay Physical Downlink Control CHannel (R-PDCCH) by a User Equipment (UE) in a wireless communication system. The method includes receiving a downlink subframe including one or more aggregated resource blocks including resource elements. The resource elements are mapped in increasing order of first a subcarrier index, and then a symbol index. The method further includes monitoring the R-PDCCH on the one or more aggregated resource blocks. The one or more aggregated resource blocks are numbered based on an aggregation level and a number of the one or more aggregated resource blocks corresponding to the aggregation level.