摘要:
Pre-coder techniques disclosed herein are based on long-term statistical channel information for reducing channel feedback overhead and transmitter complexity. In an embodiment, a receiver includes two or more receive antennas spaced approximately λ/2 apart and a baseband processor. The baseband processor computes channel correlations for different combinations of transmit antennas and each receive antenna and averages the channel correlations over the different receive antennas to form a frequency-independent channel correlation matrix. The baseband processor also computes a scalar representing noise variance at the receive antennas and feeds back the frequency-independent channel correlation matrix and the scalar for use in performing transmitter pre-coding computations.
摘要:
A base station schedules one of a plurality of mobile terminals based on an expected SIR of an effective traffic channel associated with a non-scheduled mobile terminal. The expected SIR is generated by computing the expected SIR of a hypothesized traffic channel with a pre-filter adapted to the non-scheduled mobile terminal that would result if the non-scheduled mobile terminal was scheduled. A base station then schedules transmissions to the plurality of mobile terminals based on the computed expected SIR. The expected SIR may be computed so as to compensate for mismatch between the hypothesized traffic channel and a pilot channel associated with the non-scheduled mobile terminal. Alternatively, the expected SIR may be directly computed based on an estimate of the pre-filter of the hypothesized traffic channel.
摘要:
In a wireless network, plural downlink signals from plural base stations are transmitted to a terminal. The plural downlink signals all carry the same information to the terminal. The terminal provides feedback on the downlink channels. The feedback provides information on the taps of the channels. The amount of information fed back is constrained. Based on the feedback, transmission parameters of the downlink signals are adjusted. The process of transmitting, providing feedback, and adjusting the parameters continue so that the energy of the downlink signal is enhanced at the terminal location and suppressed elsewhere. Beam forming can be used to further suppress the energy signature at locations other than the terminal location.
摘要:
Diversity radio transmission is accomplished with excellent performance using multiple antennas receiving a transmission signal from a single power amplifier. A data signal to be transmitted is provided to a first antenna, and a phase-shifted version of the data signal is applied a second antenna. The relative phase shift between the data signal transmitted over the two transmit antennas ensures the two antenna signals can be constructively combined at the receiver. In one non-limiting example embodiment, the relative phase shift is determined by processing pilot signals sent along with the data signal and which are transmitted with predetermined phase shifts.
摘要:
Multi-antenna transmission control presented herein involves generating a set of virtual channel realizations at the transmitter that shares the same second-order statistics as the actual channel realizations observed for a targeted receiver. By making the control-related quantities of interest at the transmitter depend on the long-term statistics of the channel, the actual channel realizations are not needed for transmission control, e.g., for accurate Multiple-Input-Multiple-Output (MIMO) preceding. As such, the use of virtual channel realizations enables transmission control that approaches the “closed-loop” channel capacity that would be provided by full feedback of the (instantaneous) actual channel realizations, without requiring the overhead signaling burden that attends full feedback.
摘要:
A base station maximizes a uplink data transmission rate from multiple mobiles treated by the base station as a virtual single uplink transmitter. The base station identifies a set of mobile stations as a candidate transmitting set and determines a transmit power allowable from the mobile stations in the candidate transmitting set. A subset of those mobile stations in the candidate transmitting set is identified. Uplink data transmission rates are assigned and communicated to the subset of mobile stations in the candidate transmitting set so as to optimize a total number of bits processed by the base station associated with the uplink transmissions received from the subset of candidate mobile stations. The optimization may accomplish one or more objectives in addition to optimizing the total number of bits processed.
摘要:
A method is described herein for reducing the number of feedback bits needed to send channel state information over a feedback channel from a receiving unit (e.g., mobile terminal, base station) to a transmitter unit (e.g., base station, mobile terminal) in a wireless communication system. In the embodiment, the receiver unit is capable of performing the following steps: (1) receiving a pilot signal from a transmit antenna located at a transmitter unit; (2) analyzing a channel tap associated with the transmit antenna and exploiting the temporal correlations of the channel tap to generate the following (i) a delta-modulated feedback bit indicative of a real part of a complex coefficient of the channel tap associated with the transmit antenna and (ii) a delta-modulated feedback bit indicative of an imaginary part of the complex coefficient of the channel tap associated with the transmit antenna; and (3) sending the two feedback bits over a feedback channel to the transmitter unit which analyzes the two feedback bits, and other feedback bits corresponding to other channel taps of this and other transmit antennas, to optimize the subsequent transmission of data to the receiver unit.
摘要:
In a selective MIMO system, the mobile station provides channel quality feedback for one or more possible transmission mode. The mobile station provides channel quality feedback for a first mode regardless of channel conditions and determines whether to provide feedback for one or more additional modes based on current channel conditions.
摘要:
A method is described herein that enables a Selective-Per-Antenna-Rate-Control (S-PARC) technique to be effectively implemented in a wireless communications network (e.g., HSPDA third generation communications network). In one embodiment, the method enables the S-PARC technique to be implemented in the wireless communications network by enabling a mobile terminal device to generate and transmit a “full” feedback signal to a base station that analyzes the “full” feedback signal and determines which mode and transmission rate(s) are going to be used to transmit data substream(s) from selected transmit antenna(s) to the mobile terminal device. In another embodiment, the method enables the S-PARC technique to be implemented in the wireless communications network by enabling a mobile terminal device to generate and transmit a “reduced” feedback signal to a base station that analyzes the “reduced” feedback signal and determines which mode and transmission rate(s) are going to be used to transmit data substream(s) from selected transmit antenna(s) to the mobile terminal device.
摘要:
A method and noise reduction apparatus comprises a microphone array including a plurality of microphone elements for receiving a training signal including a plurality of training signal samples, and a working signal including a plurality of working signal samples, and at least one frequency domain convertor coupled to the plurality of microphone elements for converting the plurality of training signal samples and the plurality of working signal samples to the frequency domain. A signal spatial correlation matrix estimator is coupled to the at least one frequency domain convertor for estimating a signal spatial correlation matrix using the converted plurality of training signal samples. An inverse noise spatial correlation matrix estimator is coupled to the at least one frequency domain convertor for estimating an inverse noise spatial correlation matrix using the converted plurality of working signal samples. A constrained output generator is coupled to the at least one frequency domain convertor, the signal spatial correlation matrix estimator and the inverse noise spatial correlation matrix estimator for generating a constrained output for the noise reduction apparatus using the converted working signal samples, the estimated signal spatial correlation matrix and the estimated inverse noise spatial correlation matrix.